
PivotScale:
A Holistic Approach for Scalable Clique Counting

Amogh Lonkar Scott Beamer
Computer Science & Engineering

University of California, Santa Cruz
Santa Cruz, CA, USA

{alonkar, sbeamer}@ucsc.edu

Abstract—Counting cliques of size k (k-cliques) in a graph
is an important problem in graph pattern mining. Due to a
combinatorial explosion in the amount of work, counting large
cliques in real-world networks is challenging, as leading parallel
approaches become untenable for even modestly large clique sizes
(e.g. k=10). Pivoter, a recent algorithm, is able to scale to much
larger clique sizes due to its superior algorithmic complexity.
While it has leading single-thread performance, its naive parallel
implementation results in poor parallel speedups. Efforts to
optimize its parallel performance on CPUs are absent in the
current literature.

We present PivotScale, a scalable approach to accelerate exact
clique counting. Our approach scales with both the number of
cores as well as the clique size k. During the initial ordering
phase, we introduce a heuristic to select which parallel ordering
approach will result in the fastest overall execution time. In the
subsequent counting phase, we increase scalability by reducing
memory usage. Our high-performance parallel implementation
outperforms prior work and demonstrates near-linear parallel
scaling for up to 64 threads on large real-world social networks.

Index Terms—Graph algorithms, clique counting, parallel
scaling, performance analysis

I. INTRODUCTION

Clique finding is a well-studied problem with many interest-
ing practical applications including community detection [1]–
[4] and social network analysis [5], [6]. A k-clique is a
subgraph of k vertices where each vertex is connected to every
other vertex. In recent years, the data mining community has
incorporated clique finding into deep learning classifiers to
enhance recommender systems in social networks [7], [8].
Clique finding is used prominently in bioinformatics where
researchers use graph models to find variants in gene se-
quences [9], efficiently group related genes in a database [10],
and analyze protein structures [11]. The rapid growth of social
media and the large size of genomic data have amplified the
need for high-performance systems capable of analyzing these
massive networks to count or enumerate their k-cliques.

Clique finding represents only a single problem in the
Graph Pattern Mining (GPM) domain. There are many GPM
frameworks [12]–[16], and they use generalized algorithms to
provide APIs to count arbitrary subgraph patterns of inter-
est (motifs). By contrast, algorithms specialized to count k-
cliques [17]–[19] generally perform better.

Clique counting is a challenging but rich problem to explore.
Searching for cliques involves considering various combina-

0 10 20 30 40 50 60
Clique Size (k)

102

105

108

1011

1014

1017

1020

Nu
m

be
r o

f k
-c

liq
ue

s

Skitter
Baidu
Wiki-Talk
Orkut

Fig. 1. Frequency distribution of k-cliques in different graphs (Table I).
Large real-world graphs frequently have large cliques, but enumeration-based
methods scale exponentially with clique size (k) making them unsuitable.
Pivoting-based counting methods (this work) are algorithmically efficient.

tions of vertices which results in a combinatorial explosion of
algorithmic work. The prevalence of large cliques in real-world
networks (Figure 1) necessitates a combination of algorithmic
efficiency and practical performance to process them.

Leading clique counting algorithms typically contain two
main phases: ordering, which converts the undirected input
graph into a directed acyclic graph (DAG), and counting,
which is dominated by recursively building induced subgraphs.
Different algorithms approach the counting phase differently,
and they can be classified as enumeration-based [17], [19] or
pivoting-based [18], [20]. Enumeration-based algorithms are
generally faster for counting smaller cliques, while pivoting-
based algorithms are faster for larger cliques.

Large cliques are common in practice, and surprisingly,
larger cliques can even be more common than smaller cliques
(Figure 1). This counterintuitive result arises because a clique
of size n contains

(
n
k

)
k-cliques. That combinatoric quantity

is maximized when k ≈ n
2 . Thus, if there is a large maximal

clique, there are a surprising number of still reasonably large
cliques contained within it. For example, a 24-clique contains
over 2.7 million 12-cliques. This highlights why counting large
cliques is challenging. Increasing the target clique size not only
deepens the search space, but it also increases the number of
cliques to be counted.

As core counts continue to increase in modern machines,

improving parallel performance becomes increasingly essential
to process graphs at scale. Given that multiple factors affect
clique counting performance, we take a holistic approach to
improve its parallel scalability and overall performance on
CPUs. We analyze both the ordering and counting phases
of the current state-of-the-art pivoting-based clique count-
ing algorithm Pivoter [18] to understand how these factors
impact performance and guide the creation of our targeted
optimizations. In this work, we present PivotScale, a fast
and scalable exact clique counting algorithm, and make the
following contributions:
• We explore the tradeoffs between ordering quality and

counting phase time. We consider a traditional core or-
dering, a parallel degree ordering, a parallel core ordering
approximation, a parallel k-core decomposition based
ordering, and a novel parallel centrality ordering. Our
parallel core ordering approximation performs well and
typically produces the same maximum out degree as the
traditional core ordering.

• Depending on the input graph topology, a different order-
ing will produce the fastest overall time, so we present a
runtime heuristic to quickly select the best ordering.

• To increase the parallel scalability of the counting phase,
we present a subgraph data structure which greatly re-
duces memory usage while still allowing for fast access
to neighbor lists.

• Combining our heuristic and the optimizations in the or-
dering and counting phases, we achieve the first scalable
pivoting-based clique counting algorithm on CPUs.

We evaluate PivotScale on a suite of real-world graphs
and compare it to Pivoter and other prior work. PivotScale
achieves near-linear parallel scaling up through 64 threads for
the entire clique counting process. We also compare against a
GPU implementation of pivoting, GPU-Pivot [20]. PivotScale
scales better with increasing clique size (k) which allows it to
outperform the GPU when counting larger cliques.

II. BACKGROUND

A. Preliminaries

For a given undirected input graph G, we want to count the
number of cliques within it. A clique is a completely connected
subgraph, i.e. each vertex is directly connected to every other
vertex in the subgraph. A k-clique is a clique of exactly k
vertices. The input graph G consists of a vertex set, V (G), and
an edge set, E(G). Each vertex u in G has a neighborhood
N(u) which is the set of vertices that u is directly connected
to. The size of a neighborhood is the degree d(u) = |N(u)|.

To reduce the amount of work to count cliques, efficient
algorithms transform G into a DAG ~G. With the DAG, each
clique is only counted once in its canonical form instead of
k! times. Given a total ordering ω, directionalizing transforms
the graph G to ~G by removing the edge v → u from E(G)
if ω(v) ≥ ω(u) and keeping only the edge u → v in E(~G).
Edges are thus directed from a lower ω to a higher ω vertex.
Pivoter uses a core/degeneracy ordering, which guarantees the

0 1 2

3 4 5 −→

6

0 1 2

3 4 5

6

Fig. 2. Converting an undirected input graph (left) to a directed acyclic
graph (right) with a degree-based ordering. Furthermore, the highlighted (red)
portion on the right indicates the subgraph induced by vertex 0.

lowest maximum out-degree (core value) of a vertex in ~G.
While this approach reduces the amount of work done while
counting cliques, it requires a fair bit of effort to compute,
and cannot be parallelized since it requires removing vertices
sequentially [21]. Alternatively, a degree ordering compares
vertices by degree and uses the identifier as a tiebreaker
(example in Figure 2), and computing it is easily parallelized.

A major step in counting cliques is building a vertex-
induced subgraph. This subgraph represents the current scope
of the graph being explored which can potentially be a clique.
The induced subgraph contains the neighbors of the target
vertex and any edges between them, but it does not include
the target vertex itself. The highlighted portion in Figure 2 is
the subgraph induced for vertex 0. We denote the subgraph
induced by vertex u on ~G to be ~gu with ~V (gu) = N(~u) and
~E(gu) = {(v1, v2) | (v1, v2) ∈ E(~G) ∧ v1 ∈ N(~u) ∧ v2 ∈

N(~u)}.

B. Pivoting-Based K-Clique Counting

Both clique counting approaches (enumeration and pivoting)
recursively build subgraphs in the counting phase, but they
differ in which subgraphs they build in each recursion level.
Enumeration-based methods build a subgraph for every vertex
in the subgraph at that level.

In contrast, Pivoter [18], the leading pivoting-based algo-
rithm for k-clique counting, prunes away redundant work in
the search space by judiciously selecting which subgraphs
to build based on a pivot vertex. Pivoter counts maximal
cliques using the Bron-Kerbosch algorithm [22]–[24]. Once
a maximal clique of size n has been found, the number of k-
cliques present in the maximal clique can be calculated by the
formula

(
n
k

)
. Since Pivoter’s worst case execution time does

not depend on k, it is more efficient than enumeration-based
methods for counting large cliques. Pivoter is able to count
instances of 100-cliques and larger in real-world networks. In
contrast, leading enumeration-based algorithms typically take
an unreasonable amount of time when k ≥ 8 (Figure 12).

After the DAG is generated by a core ordering, Pivoter
starts counting the cliques (Algorithm 1). For each vertex,
Pivoter discovers maximal cliques that contain it. Because of
directionalization, each maximal clique is discoverable from
only one root vertex and thus only counted once. Pivoter
maximizes the clique C by recursively adding a vertex w to
it and constraining the subgraph to only contain neighbors of
w. To reduce the amount of work, the pivot (highest-degree

Algorithm 1 Pivoter Algorithm for Counting k-cliques
1: function COUNTCLIQUES(G, k)
2: ~G← DirectByCoreOrder(G) . Directionalize
3: count← 0
4: for all v ∈ V (~G) in parallel do
5: ~gv ← InduceSubgraph(~G, v)
6: count += CountRecurse(~gv , {v}, 0)
7: return count
8: function COUNTRECURSE(~gv , C, np)
9: if V (~gv) = Ø ∨ |C| − np = k then

10: return
(

np
k−|C|+np

)
11: p← FindPivot(~gv) . Pivot
12: count← 0
13: for all w ∈ {V (~gv) \N(p)} do . Includes p
14: ~gw ← InduceSubgraph(~gv , w)
15: if w = p then . Processing pivot
16: count += CountRecurse(~gw, C∪{w}, np+1)
17: else
18: count += CountRecurse(~gw, C ∪ {w}, np)
19: return count

vertex in the subgraph), is chosen at each level. Pivoting
saves work by not building subgraphs for the neighbors of the
pivot since they will be handled by the pivot’s subgraph. The
recursion branches accordingly to also handle non-neighbors
of the pivot. The actual counting (line 10) requires knowing
the number of pivots taken so far in the recursion (np). We
discuss subtle details of Algorithm 1 in Section V-A.

As an implementation optimization, Pivoter builds a fresh
subgraph for the first level, and then mutates that subgraph
for subsequent levels since they may only slightly shrink the
subgraph. Since the original DAG is left unmodified (only
the subgraph is modified), each vertex can be processed in
parallel (line 4). Mutating subgraphs instead of building them
fresh for each recursive call saves a substantial amount of
work, but the challenge is that these subgraph mutations must
be reversible. In particular, sets of reversible changes must be
able to accumulate and be undone like a stack to match the
tree of recursive calls. Naturally, this mutation-intensive code
can be difficult to implement correctly, but it is performance
critical for this problem. The time spent inducing subgraphs
by mutation (lines 5 & 14) and then reversing those mutations
(not shown), makes up the bulk of the computational work.

C. Efforts to Parallelize Pivoter

The original Pivoter publication focuses on its sequential
implementation, but it also includes a naively parallelized
implementation [18]. The authors note that their parallel
implementation demonstrates that their algorithm can be par-
allelized, but it is not optimized for performance. In our
experiments, we measure modest parallel speedups (< 4×)
on 64 threads in the counting phase, and its overall scalability
is further hindered by the use of a sequential algorithm for or-
dering. Currently, the only optimized parallel implementation

of pivoting-based clique counting is GPU-Pivot presented by
Almasri et al. [20]. To the best of our knowledge, no literature
currently exists for parallelizing Pivoter for CPUs.

Counting cliques on GPUs requires a careful balance be-
tween exposing sufficient parallelism to keep a large num-
ber of threads busy without significantly increasing memory
consumption by storing intermediate data per-thread. In GPU-
Pivot [20], a vertex or an edge is assigned to a block of threads
(warp). Finding the pivot vertex is the only algorithmic work
that is parallelized within a warp. Once the pivot has been
found, all threads in the warp sequentially build the same in-
duced subgraph. This avoids increasing memory consumption
by not building multiple induced subgraphs in parallel within
a warp. To further optimize memory consumption, GPU-Pivot
stores the entire adjacency matrix in a binary-encoded format.
This requires building a new subgraph per recursive call,
resulting in more algorithmic work. Since counting cliques on
large dense graphs involves recursively building many induced
subgraphs, building a single subgraph per-warp complicates
fully utilizing the GPU’s parallel capabilities when scaling up
the clique size.

In contrast, we leverage the additional memory capacity of
CPUs to store a subgraph per thread. While our structure is
not as memory efficient as the binary-encoded subgraph, we
avoid building a new subgraph per level because we are able to
reuse our subgraphs with reversible mutations. This improves
scalability on large dense graphs with many cliques.

III. PARALLELIZING THE ORDERING PHASE

When scaling to larger target clique sizes, limiting the
maximum out-degree in the directionalized graph is essential
for performance. The counting effort required per vertex is su-
perlinear with respect to degree, so limiting the maximum out-
degree created during the ordering phase can greatly reduce
the amount of algorithmic work in the subsequent counting
phase. For this reason, Pivoter employs a core ordering which
guarantees the lowest maximum out-degree [18]. Even though
computing a core ordering is sequential, for moderate or
larger clique sizes, the time it saves in the counting phase
typically outweighs the time a fast parallel ordering (to create
an inferior directionalized graph) would save in the ordering
phase (Table III). Since the time spent in the counting phase
typically depends on the maximum out-degree produced by
the ordering, we use the maximum out-degree to determine
the quality of an ordering.

A. Parallel Core Ordering Approximation

While maintaining ordering quality, we accelerate the order-
ing phase since computing an ordering sequentially can con-
sume a significant fraction of the overall time (Algorithm 2).
We take inspiration from an existing parallel approximation
presented by Besta et al. applied to graph coloring [25]. While
the core ordering algorithm used in Pivoter removes a single
vertex (with the least degree) at a time, the approximation
removes vertices in bulk over multiple parallel rounds. The
approximation selects vertices for removal if their degree is

Algorithm 2 Parallel Core Ordering Approximation
1: function APPROXCOREORDER(G, ε)
2: level← 0
3: while |V (G)| > 0 do
4: remove← {} . Vertices to remove this round
5: δ ← |E|

|V | . Average degree
6: for all u ∈ V (G) in parallel do
7: if d(u) < (1 + ε)× δ then
8: remove← remove ∪ {u}
9: ω[u]← level . Assign rank to vertex

10: V (G)← V (G) \ remove . Remove vertices
11: for all u ∈ remove in parallel do
12: for all v ∈ N(u) do
13: d(v)← d(v)− 1 . Update degrees
14: level← level + 1

15: return ω

less than (1 + ε)δ, where ε is an error parameter and δ is
the average degree of the remaining graph. It then removes
the vertices and updates the degrees of their neighbors. This
approach processes and removes a large fraction of the vertices
in parallel during the first few rounds.

The parameter ε allows for a tradeoff between ordering
quality and parallelism. Increasing ε causes more vertices
to be removed each round, which increases the amount of
parallelism but lowers the quality of the ordering. Setting
ε sufficiently high produces an ordering similar to a degree
ordering, while setting ε sufficiently low results in an approx-
imation of the core ordering. In our experiments, we sweep
various values for the parameter ε and find that ordering
quality and counting performance is typically best when the
maximum out-degree is equal to that produced by the core
ordering (Section VI-C).

When we use our ordering approximation to directionalize
the graph, we need a tiebreaker since the rankings produced
are not unique (they are based on the round removed). An
effective tiebreaker is to first use the original degree and then
the vertex identifiers if necessary.

B. Parallel k-core Ordering

The process of peeling vertices to generate the core ordering
is also similar to computing a graph’s k-core decomposition.
A k-core of a graph is a maximal connected subgraph such
that every vertex in the subgraph has a degree of at least k. A
k-core decomposition assigns the largest k to each vertex for
which k-core that vertex belongs to. We can use the k-core
decomposition to produce an ordering that directs edges from
vertices with a lower k-core number to vertices with a higher
k-core number. However, since multiple vertices can share
a k-core number, a tiebreaker is required. We use the same
tiebreaker as our parallel core approximation: degree first, and
vertex identifier second. There are already parallel algorithms
to compute a k-core decomposition such as ParK [26] and
PKC [27].

Depending on the ε parameter, our core approximation will
use a greater or fewer number of rounds than a parallel k-
core decomposition, and thus a greater or fewer number of
distinct rankings. When ε is sufficiently small that our core
approximation produces more distinct rankings over a greater
number of rounds, it can produce a higher-quality ordering.

C. Centrality-Based Ordering

To better appreciate what characteristics make an ordering
approximation effective, we analyze the differences between
the core and degree orderings. Both orderings often produce
mosty similar directionalizations, and they differ for only
about 3–5% of edges. Those differences typically involve high-
degree vertices. The degree ordering will rank simply based
on the initial degree, while the core ordering effectively also
considers the degrees of the neighbors. Since the core ordering
peels the lowest degree vertex remaining at a time, the vertices
with the highest rankings will also have the highest degree
neighbors. Thus, a core ordering ranks vertices mostly by
importance akin to PageRank [28].

We propose using Eigenvector centrality to quickly rank
important vertices in the graph [29]. The centrality ordering
is simple to compute and is easy to parallelize, since it only
requires summing up the scores of each vertex’s neighbors’
scores. This is even simpler than PageRank [28] since it
does not require normalizing the scores. With a few iterations
(3), the centrality ordering produces a maximum out-degree
that lies between that of the core ordering and the degree
ordering. While the centrality-based ordering never results in
the fastest overall performance, it is always faster than the
slower ordering between core and degree. This demonstrates
that a successful ordering should not only consider degrees,
but importance as well. It also demonstrates that importance
can be quickly approximated.

D. Tradeoffs Impacting Which Ordering is Best

In our analysis, we find that different orderings perform
better during the counting phase for different graph topologies.
The fastest overall execution, including both ordering and
counting, is typically achieved by the core approximation with
ε = −0.5 or the degree ordering (Figure 8). This challenges
the expectation that core ordering is always better for pivoting.
Although it is conceivable that a faster to compute ordering
might result in a lower total time than the parallel core
approximation, it is surprising it is faster specifically in the
counting phase. Our analysis reveals that counting with the
core ordering executes fewer instructions, but counting with
the degree ordering executes instructions faster (Section VI-B).
In other words, the core ordering has the expected algorithmic
advantage, but the degree ordering has a practical speed
advantage. Thus, which ordering is faster depends on whether
the core ordering saves a sufficient amount of algorithmic work
to overcome the degree ordering’s speed advantage.

We next analyze why the degree ordering sometimes counts
faster despite both orderings using the same counting imple-
mentation. Our analysis reveals that counting with a degree

0 10000 20000 30000
0

50

100

150

200

250
De

gr
ee

 in
 D

AG
Core Ordering

0 10000 20000 30000
0

50

100

150

200

250
Degree Ordering

Degree in Undirected Graph

Fig. 3. Differences in degree distribution after directionalizing using a core
ordering (left) and a degree ordering (right) on the Skitter graph.

ordering executes instructions faster due to fewer cache misses
(Section VI-B). Both orderings start from the same graph,
and the resulting DAGs have the same average degree, but
their degree distributions can differ (Figure 3). In practice, the
degree ordering does not achieve as low of a maximum out
degree as the core approximation, but those extra edges reduce
the degrees elsewhere.

The amount of work to process a vertex in the DAG depends
on how many subsequent recursive function calls it produces
(Algorithm 1). High-degree vertices result in a greater breadth
of calls initially, and vertices in larger cliques result in a greater
depth of calls. That initial breadth of calls from a high-degree
vertex results in more reuse (cache locality) for the induced
subgraph (g~v). Thus, the degree ordering’s speed advantage
is due to it enjoying more reuse due to its edges being
concentrated in higher-degree vertices. Counting with the core
approximation is faster when the algorithmic work advantage
is substantial, and empirically, we observe that occurs with
graphs with more cliques. The greater recursive call depth
from those cliques compounds the amount of work (Table II).

E. Heuristic to Select Best Ordering

Our insights from the last section indicate that the degree
ordering is faster overall when the graph has relatively few
cliques. Thus, a heuristic can decide which ordering to select
if it can coarsely predict the prevalence of cliques. Cliques are
pockets of density in an otherwise sparse graph. Naturally, a
large clique requires its members to have at least moderately
high degrees. In an assortative network, high-degree vertices
are more likely to be connected to other high-degree vertices,
and social networks are assortative [30]. Large cliques typi-
cally emerge in assortative networks as the density of high-
degree vertices encourages their formation.

We present a simple heuristic leveraging our assortativity
insight. In the original graph, we identify the highest degree
vertex, and consider the highest degree a of its neighbors. If a
is large, it means the highest degree vertex has a high-degree
neighbor, and the graph is likely assortative and thus more
likely to have many cliques. To adapt to different graphs, we
normalize to the number of vertices. Empirically (Table IV),
we find if a/|V | ≥ 0.0015, it is better to use the core

approximation (large cliques are likely), and otherwise, use
the degree ordering.

To add robustness to our heuristic, we also test the assor-
tativity of the graph by measuring the number of common
neighbors between the highest-degree vertex and its highest-
degree neighbor. Empirically, we find that over 10% of the
neighbors are common between the two vertices when there
are sufficiently many cliques to merit the core ordering ap-
proximation. We also find that the degree ordering is more
advantageous for smaller graphs (|V | < 1M), where ordering
is a significant fraction of the total time (Table III). In
summary, we select the core approximation if the graph is
sufficiently large and if either a/|V | ≥ 0.0015 or over 10%
of neighbors are common between the two vertices, and the
degree ordering otherwise.

IV. IMPROVING COUNTING PHASE SCALABILITY

The counting phase is important to optimize since it is
the longest phase of clique counting. We base our counting
approach on Pivoter, the most algorithmically efficient pivoting
implementation [18]. While processing a vertex, it first builds
an induced subgraph and then modifies it in subsequent
recursive calls to count all of the cliques originating from
that vertex. This approach is compatible with a vertex-parallel
strategy, since the induced subgraphs that are modified are also
independent. A vertex-parallel strategy brings up two potential
concerns: load imbalance due to the skewed degree distribu-
tions of real-world graphs and increased memory requirements
for large thread-local structures.

We analyze the potential for load imbalance by both at-
tempting to improve it and measuring how much time each
thread is working. Sweeping various scheduling parameters
such as task granularity (chunk sizes) and scheduler types
(static, dynamic, cyclic) does not fully improve parallel scal-
ability. Additionally, we measure the time required for each
thread during the entire counting phase while executing with
64 threads. The coefficient of variance (the ratio of standard
deviation to the mean) for the execution time of each thread
across the entire suite of input graphs is 0.03. Through our
analysis, we find that load balance is at most a minor factor,
and memory usage hinders scalability to a much greater extent.

The induced subgraph data structure is performance critical
for counting cliques, and since it is thread-local, its memory
consumption is also important. The original Pivoter code
represents the subgraph with an adjacency list that has an array
of size |V (G)| pointing to inner arrays that store the neighbors
of the associated vertices (Figure 4A). This dense index array
allows for constant-time access to neighbor lists, and we refer
to this approach as PivotScale (dense). With minor adjustments
to memory allocation, we observe that such a dense structure
often performs well, but the |V (G)|-sized index consumes
substantial memory when there is one subgraph per thread.
Note that if the number of threads is greater than the average
degree of the graph, these indices alone will consume more
memory than the original graph.

d(v)

1 3 4

0 1 2

Legend
Vertex in

Induced Subgraph

New Vertex
Identifiers

Edge in
Induced Subgraph

1 3 4

3 1

44 3

1

d(v)

Hash Map

3 1

44 3

1

|V|
0 1 2 3 4 5 6

A) Dense

B) Sparse C) Remap

1 0

22 1

0

Fig. 4. Comparison between different subgraph structures for storing the first-
level induced subgraph for vertex 0 (Figure 2) in PivotScale. Only the new
vertex identifiers and associated edges are stored in C) Remap. Our default
implementation uses C) Remap.

To compress the subgraph and improve cache locality, we
only index vertices with non-zero degree in the subgraph with
a hash map to reach their neighbor lists (Figure 4B). Since
the number of non-zero degree vertices in the subgraph is
bounded by the maximum out degree in the DAG (which is
on the order of 100s, as opposed to |V (G)|, which is on the
order of millions), this may even allow the entire subgraph to
fit in cache. We refer to this approach as PivotScale (sparse).
For large graphs like Friendster, this optimization is able to
overcome the scaling plateau from 32 threads to 64 threads.

In our experiments, we observe a lookup into a hash map
to be ≈ 1.2× slower than a direct array access. To combine
the memory efficiency of a compressed subgraph structure
with the benefit of fast indexing, we present a new subgraph
structure. Instead of using a hash map, we remap the vertex
identifiers in the first level subgraph induced by v to the
compact range [0, d(v)) and use a dense index (Figure 4C). We
only do this remapping step in the first level of the recursion,
and reuse the new identifiers in subsequent levels since the
additional space savings are modest. We refer to this approach
as PivotScale (remap), and we use it by default due to its
leading performance and scalability.

V. IMPLEMENTATION DETAILS

A. Implementation Subtleties for Pivoter

There are some additional details to the Pivoter algorithm
and our implementation of it that are not conveyed in Algo-
rithm 1 due to their complexity to express concisely. First,
additional logic can be placed to allow the recursion to
terminate early when the subgraph remaining combined with
the clique size so far is too small to reach k (before line 9).
Second, Algorithm 1 counts cliques of a target size k, but the
original Pivoter algorithm can actually count the occurrences
of every clique size up through k with only a modest amount
of additional work to compute additional binomial coefficients
in a loop (modify lines 9–10). We omit this detail since the

prior work we compare to does not have this ability, but our
released code provides an additional version capable of this.

There is a subtlety regarding how and when to direct
the graph and subgraphs. Technically, pivoting and direc-
tionalization are independent concepts [20]. In this work,
we take Pivoter’s approach since we find it to perform the
best on multicore [18]. Our approach within Algorithm 1:
directionalize the graph first (line 2), symmetrize the subgraph
when building the first level (line 5), maintain edge directions
when building a subgraph for the pivot (line 16), and direct
by vertex identifiers for non-neighbors of the pivot (line 18).

Counting cliques by recursively building subgraphs requires
several sets in addition to the adjacency list for the topology.
In prior implementations, these sets are canonically: vertices
under consideration for the clique (P), vertices currently in the
clique (R), and vertices no longer under consideration (X).
These sets have the invariants that each vertex is in exactly
one set and P ∪R ∪X = V (G). By implementing these sets
together and leveraging the invariants, the implementations can
provide constant-time operations for testing set membership,
iteration, and moving between sets [24].

To be able to reverse a mutation requires retaining informa-
tion. Implementations typically place some of the information
needed for reversing in the function call frame, so it naturally
tracks the recursive calls. The remaining data needed to reverse
a mutation can be recomputed by carefully examining the
mutated graph. For example, recently deleted edges can be
swapped from just beyond the active portion of neighbor lists.

B. Innovations Specific to PivotScale

We started our implementation from GAP Benchmark Suite
reference code [31]. In addition to implementing our novel
contributions, we focused on both optimizing the performance
of subgraph mutations as well as encapsulating their com-
plexity. Instead of continuing to use the P-R-X structure, we
streamlined the object to have only a single sparse set to hold
the subgraph’s active vertices (P). We do not need set R since
we are only counting cliques instead of listing them, and we
also do not need set X to maintain the invariants. To provide
constant-time membership checks for our sparse set (an array),
we also use a dense bitmap. On the platforms we evaluate, we
find using a byte per entry instead of a bit per entry performs
even better. These lookups are frequent, and the remapping has
already sufficiently shrunken the size of the dense structure.

Since the subgraphs are so frequently induced and mutated,
we identified a need to make those operations fast. Our initial
implementations were algorithmically fast, but experienced
slowdowns in practice due to frequent memory allocations and
deallocations. Although the operations are fast in isolation, if
done repeatedly, they can cause memory fragmentation and
the memory allocator can become a bottleneck. Thus, we
redesigned our objects to reuse memory allocations to avoid
the need for new allocations. This required vigilant tracking
of mutations to make it easy to not only undo a subgraph
induction, but to even reuse the entire subgraph object for a
new vertex. The various arrays within these data structures are

Graph Description |V| (M) |E| (M) δ kmax

DBLP Citation network [32], [33] 0.3 1.1 3.7 114
As-Skitter Internet topology [33], [34] 1.7 11.1 6.5 67
Baidu Links between web pages [35], [36] 2.2 17.8 8.5 31
Wiki-Talk Network of Wikipedia users [33], [37], [38] 2.4 9.3 3.9 26
Orkut Social network [32], [33] 3.1 117.2 37.8 51
LiveJournal Social network [32], [33] 4.0 34.7 8.1 -
Web-Edu Links between .edu web pages [39] 9.9 46.2 2.4 449
Friendster Social network [32], [33] 65.6 1,806.1 27.5 129

TABLE I
INPUT GRAPHS USED IN THE EVALUATION INCLUDING THE AVERAGE

DEGREE (δ) AND SIZE OF THE LARGEST CLIQUE (kmax).

all vectors, so they can grow when needed but do not need to
initially over-allocate. However, most of the time, the current
need is less than prior allocations, so they can be efficiently
reused.

Choosing to perform a vertex identifier remap operation
only at the first level subgraph operation makes our imple-
mentation efficient. The hash maps have a significant com-
putational cost, so using them frequently, as done by the
sparse subgraph, becomes the dominant operation. The dense
subgraph benefits from no computational overheads to access
elements, but the majority of the elements are unused, so the
cache capacity is used ineffectively. By performing a remap
operation at the first level, we shrink the identifier range to be
sufficiently small that dense structures are practical, and we
pay the overhead of the hash map only once rather than for
every graph operation.

VI. EVALUATION

A. Experimental Setup

We perform our experiments on a single-socket AMD
EPYC 9554 (Genoa) which has: 64 × 3.1 GHz physical cores,
256 MB of shared L3 cache, and 768 GB of RAM. We use 64
threads unless specified otherwise. Our implementation uses
C++20 with OpenMP, and is compiled with g++ version 12.2.0
and optimization level -O3.

We use a variety of input graphs to evaluate the performance
of our optimizations (Table I). Since clique finding is used
heavily in social network analysis, we select graphs commonly
used in this subfield to make our analysis more consistent with
prior work. All graphs are unweighted and symmetrized to
initially be undirected. Unless specified otherwise, all experi-
ments are for counting 8-cliques and our implementation uses
our remapped subgraph structure.

B. Analyzing Prior Ordering Techniques

To appreciate the impact of the ordering phase on the overall
execution time, we first consider the prior ordering approaches:
core ordering and degree ordering (Table III). Although the
ordering phase is usually only a modest portion of the overall
execution time, it can have a significant impact because it
can greatly affect the counting phase. We observe that in
most cases, the core ordering results in faster counting times.
It reduces the amount of algorithmic work in the counting
phase by generally producing a lower maximum out-degree.
For DBLP, Baidu and Friendster, we observe that a degree

Graph Normalized Normalized Normalized Normalized
Instruction Count Function Calls LLC MPKI IPC

DBLP 1.00 1.02 0.92 1.00
As-Skitter 1.52 1.44 0.66 1.04
Baidu 1.00 1.01 0.92 1.07
Wiki-Talk 1.36 1.35 0.83 1.01
Orkut 1.07 1.08 0.86 1.00
LiveJournal 1.28 1.21 1.09 0.97
Web-Edu 1.26 1.31 0.74 1.04
Friendster 1.00 1.02 0.88 1.04
geometric mean 1.16 1.17 0.85 1.02

TABLE II
COUNTING PHASE OF DEGREE ORDERING NORMALIZED TO CORE

ORDERING. COUNTING WITH A DEGREE ORDERING ALWAYS EXECUTES
MORE INSTRUCTIONS, BUT TYPICALLY EXECUTES THEM FASTER DUE TO
FEWER CACHE MISSES (MPKI). LIVEJOURNAL IS A VERY CHALLENGING
GRAPH DUE TO THE EXTREMELY LARGE NUMBER OF CLIQUES, AND THE
CORE ORDERING HAS BETTER PRACTICAL PERFORMANCE IN ADDITION

TO SUPERIOR ALGORITHMIC EFFICIENCY.

ordering actually results in a marginally faster counting time
while being significantly faster in the ordering phase.

To investigate why a degree ordering results in better
counting performance on certain graphs, we use hardware per-
formance counters to profile the counting phase (Table II). The
degree ordering always executes more instructions due to more
recursive function calls, which is expected since it has a higher
maximum out degree. A higher maximum degree causes larger
induced subgraphs, and consequently, more instructions to
process those larger subgraphs. Larger, denser subgraphs also
generally lead to more recursive function calls with increased
reuse, i.e. locality. That locality allows the degree ordering to
execute instructions faster due to fewer cache misses (last-level
cache misses per kilo-instructions (LLC MPKI)).

For the graphs the degree ordering counts faster (DBLP,
Baidu, and Friendster), we observe the number of function
calls and instructions executed are close to those from the core
ordering (Table II). These graphs do not have as many densely
connected subgraphs, resulting in comparable work for both
orderings. Since the degree ordering counts faster and there
is no algorithmic advantage for the core ordering, the degree
ordering is faster overall. This demonstrates that a lightweight
ordering can produce the fastest overall time, so our heuristic
should consider a degree ordering is needed.

C. Analyzing Ordering Phase Tradeoffs

To achieve a high-quality ordering in less time than the
inherently sequential core ordering, we consider the parallel
core approximation (Section III-A), the parallel k-core (Sec-
tion III-B), and the centrality orderings (Section III-C) from
this work. The ε parameter for our parallel core approximation
provides a tradeoff between ordering quality and parallelism.
We consider many values of ε but report only the most
representative ones for space concerns. For the parallel k-core
ordering, we measure the time to generate the ordering using
PKC [27], and we import that ordering into our implementa-
tion to measure its counting time.

We first compare the orderings by quality as measured by
the maximum out degree (Figure 5). The ε parameter allows
our core approximation to achieve a range of quality, by
setting it sufficiently low (-0.5) to match the core ordering

Graph
Core Ordering Degree Ordering

Ordering Time (s) Counting Time (s) Total Time (s) Max. Out-Degree Ordering Time(s) Counting Time (s) Total Time (s) Max. Out-Degree
(1 thread) (64 threads) (64 threads) (64 threads) (64 threads) (64 threads)

DBLP 0.03 0.02 0.05 113 0.00 0.02 0.02 113
As-Skitter 0.32 0.53 0.85 111 0.01 1.73 1.74 231
Baidu 0.61 0.19 0.80 78 0.02 0.18 0.19 298
Wiki-Talk 0.15 0.86 1.01 131 0.01 2.69 2.70 340
Orkut 3.11 19.99 23.10 253 0.05 22.93 22.98 535
LiveJournal 1.34 2562.86 2564.20 360 0.02 3619.24 3619.26 524
Web-Edu 1.25 1.04 2.29 448 0.02 2.09 2.11 448
Friendster 126.36 58.26 184.62 304 1.68 56.24 57.92 868

TABLE III
COUNTING 8-CLIQUES COMPARING SEQUENTIAL CORE AND DEGREE ORDERINGS IN TERMS OF ORDERING TIME, ORDERING QUALITY (MAXIMUM OUT

DEGREE), AND COUNTING TIME. THE FASTEST OVERALL TIMES ARE BOLDED. THE CORE ORDERING IS GUARANTEED TO PRODUCE THE LOWEST
MAXIMUM OUT-DEGREE, WHICH TYPICALLY REDUCES THE WORK IN THE COUNTING PHASE.

DBLP
As-SkitterBaidu

Wiki-Talk Orkut
LiveJournal

Web-Edu
Friendster

geomean
0

1

2

3

4

M
ax

im
um

 O
ut

-d
eg

re
e

core
 = -0.5
 = 0.1
 = 50000

degree
EC
k-core

Fig. 5. Normalized maximum out-degree, a measure of ordering quality. All
values are normalized to the maximum out-degree of core ordering. If the ε
parameter for our parallel core approximation is sufficiently low, the ordering
closely matches the core ordering in quality.

or setting it sufficiently high (50,000) to match the degree
ordering. Even with a low ε, the approximation is able to
remove more than 50% of vertices in the first round without a
measurable decrease in quality. By ranking vertices based on
importance, the centrality ordering (EC) produces a reasonable
quality ordering that lies in between that of the core and
degree orderings. There are some graphs (DBLP, Web-Edu)
where the ordering quality remains the same for all values of
ε. Further analysis of the DAG topologies show similar degree
distributions, but the degree ordering still has marginally more
higher degree vertices. We also observe that the parallel k-core
ordering has a consistently worse ordering quality than our
core approximation orderings with low ε.

Comparing the ordering times demonstrates how expensive
a core ordering is (Figure 6). The degree ordering is the fastest
since it only requires a single parallel round and the centrality
ordering is quite quick since it only requires 3 rounds. Our
core approximation is parallelized, but it still must synchronize
between rounds, so varying ε and thus the number of rounds,
impacts the ordering time. With ε = −0.5, the ordering
requires 160–6033 rounds, which still allows for a 9.58×
speedup over the exact sequential core ordering. The speedup
is larger for larger graphs, and our approximation is able to
produce essentially the same ordering quality more quickly.
Increasing ε = 0.1 greatly reduces the number of rounds (8–
15), but that additional ordering speedup may not be worth the
loss in ordering quality. The parallel k-core ordering is faster to
produce than the core approximation ordering with ε = −0.5,

DBLP
As-SkitterBaidu

Wiki-Talk Orkut
LiveJournal

Web-Edu
Friendster

geomean
0

10

20

30

40

50

60

70

Sp
ee

du
p

ov
er

 C
or

e
Or

de
rin

g core
 = -0.5
 = 0.1
 = 50000

degree
EC
k-core

Fig. 6. Ordering time speedup over the core ordering. On larger graphs,
our core approximation is significantly faster. In addition to being fast, our
approximation with ε = −0.5 produces the same maximum out-degree as the
core ordering, which results in the counting phase time between both to be
comparable. Degree ordering is always the fastest ordering, but it does not
always result in the fastest counting times.

DBLP
As-SkitterBaidu

Wiki-Talk Orkut
LiveJournal

Web-Edu
Friendster

geomean
0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

du
p

ov
er

 C
or

e
Or

de
rin

g core
 = -0.5
 = 0.1
 = 50000

degree
EC
k-core

Fig. 7. Counting time speedup over core ordering for counting 8-cliques. The
core ordering and our parallel core approximation generally are the fastest due
to their algorithmic efficiency. Graphs like DBLP, Baidu and Friendster benefit
more from a degree ordering. Note DBLP is the smallest graph and is more
easily perturbed by minor overheads.

but slower than the degree or centrality-based orderings.
We observe that the core ordering typically results in the

best counting times (Figure 7). The low maximum out-degrees
it produces results in smaller subgraphs, and less work to
build and process those subgraphs. While the other orderings
(core-approximation, degree-based, centrality-based, parallel
k-core) are faster to compute, the resulting DAG topology
results in more work in the counting phase due to the higher
maximum out-degree. However, graphs like DBLP, Baidu
and Friendster have comparable counting phase performance
across the different orderings, and thus present an opportunity
for using a lightweight ordering.

DBLP
As-SkitterBaidu

Wiki-Talk Orkut
LiveJournal

Web-Edu
Friendster

geomean
0

1

2

3

4
Sp

ee
du

p
ov

er
 C

or
e

Or
de

rin
g core

 = -0.5
 = 0.1
 = 50000

degree
EC
k-core

Fig. 8. Total execution time for counting 8-cliques speedup over core ordering.
In graphs where core ordering results in the fastest counting, our parallel core
approximation with ε = −0.5 is much faster overall due to time saved by
computing the ordering in parallel.

DBLP
As-SkitterBaidu

Wiki-Talk Orkut
LiveJournal

Web-Edu
Friendster

geomean
0

1

2

3

4

5

Sp
ee

du
p

Ov
er

 D
en

se
 S

tru
ct

ur
e

Dense Sparse Remap

Fig. 9. Performance of different subgraph structures in PivotScale normalized
to the dense structure for counting 8-cliques with 64 threads. The remapped
structure provides the fast access of the dense structure and the memory com-
pression of the subgraph structure, resulting in the best overall performance.

Combining the ordering and counting phases, we also
measure the total time required to count 8-cliques using each
ordering (Figure 8). In graphs where the core ordering is
advantageous, we observe that the parallel core approximation
with ε = −0.5 results in the best overall times since the
ordering is faster to compute. Besta et al. find setting ε = 0.1
to be a good compromise for their graph coloring application.
By contrast, our clique counting application is more sensitive
to ordering quality and we find the additional ordering time
to be worthwhile. Surprisingly, graphs like DBLP, Baidu and
Friendster have better overall performance with the degree
ordering, despite the ordering quality being inferior in some
cases (Section III-D). Depending on the value of ε selected,
we can tune our approximation towards core or degree. The
centrality and k-core orderings are in the middle in overall
performance as they are never the fastest or slowest.

D. Analyzing PivotScale Subgraph Data Structures

We evaluate the different subgraph data structures in Pivot-
Scale on memory consumption and performance. We measure
the memory consumption for the entire process1, and find the
subgraph data structures can greatly contribute to it. Using 64
cores, the process using dense structures requires 811.67 MB
for the smallest graph (DBLP) and 265.69 GB for the largest

1Maximum memory usage collected via the Maximum resident set
size reported by the command /usr/bin/time -v.

Graph Best a |V| (M) a/|V| Common Heuristic
Ordering Fraction Time (s)

DBLP degree 296 0.3 0.0010 0.72 0.00
As-Skitter core 33,982 1.7 0.0200 0.84 0.01
Baidu degree 2,867 2.2 0.0013 0.00 0.01
Wiki-Talk core 10,520 2.4 0.0044 0.11 0.01
Orkut core 29,657 3.1 0.0945 0.12 0.01
LiveJournal core 1,705 4.0 0.0004 0.20 0.01
Web-Edu core 18,293 9.9 0.0019 0.90 0.04
Friendster degree 3,117 65.6 0.0000 0.00 0.24

TABLE IV
ORDER-SELECTING HEURISTIC INPUTS, MEASUREMENTS, AND DECISIONS

FOR COUNTING 8-CLIQUES. OUR HEURISTIC SELECTS OUR CORE
APPROXIMATION IF THE GRAPH IS LARGE ENOUGH (|V | > 1M), AND IF

a/|V | > 0.0015 OR IF THERE ARE MORE THAN 0.10 COMMON
NEIGHBORS, AND USES A DEGREE ORDERING OTHERWISE. OUR

HEURISTIC ALWAYS SELECTS THE CORRECT ORDERING. THE TIME TO
COMPUTE THE HEURISTIC IS TINY.

graph (Friendster). As expected, we find that our compact
sparse and remapped structures reduce memory consumption
by 6.63 − 40.24× (geometric mean: 17.39×). Consequently,
our sparse and remapped structures result in 1.24 − 77.00×
(geometric mean: 9.98×) fewer cache misses (LLC MPKI).
With these optimizations, we are able to fit a larger set of the
subgraph in cache, resulting in better locality. As core count,
and consequently contention for shared memory increases, our
remapped structure becomes a more scalable solution. The
remapped structure is also fast to access (Figure 9), so we
use it in our main implementation.

E. Validating Our Order-Selecting Heuristic

Our heuristic can quickly compute whether a given graph
will benefit from the algorithmic efficiency of our core ap-
proximation or the increased locality and faster ordering of a
degree ordering (Table IV). To determine whether the target
clique size (k) impacts the best ordering, we measure the total
execution time of the core approximation with ε = −0.5, the
degree ordering, and our heuristic selecting the ordering for
counting varied clique sizes (Figure 10). On larger graphs, the
degree ordering is usually faster for k = 4 due to the speed of
ordering. However, once the clique size is sufficiently large for
pivoting to be faster (k ≥ 8), which ordering is best does not
change. Since the total execution time for pivoting does not
change significantly with k, our heuristic does not consider k.

F. Parallel Scaling of k-Clique Counting with PivotScale

We evaluate the parallel scaling of our optimizations when
counting 6-cliques and 12-cliques considering all of our sub-
graph structures on all input graphs (Figure 11). We report
self-relative speedups, i.e. performance relative to the single-
thread performance of that implementation. These speedups
include all associated times, including the time to compute the
heuristic as well as the ordering and counting phases. Since the
counting phase dominates the execution time, the scalability
of the counting phase primarily determines the overall parallel
scalability.

We observe that all implementations of PivotScale achieve
near-linear scaling for most graphs. In Baidu and Web-Edu, we
observe that scaling for PivotScale’s dense structure plateaus

4 8 12 16 20
0.00

0.01

0.02

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
) DBLP

4 8 12 16 20
0.0

0.5

1.0

1.5

As-Skitter

4 8 12 16 20
0.0

0.1

0.2

Baidu

4 8 12 16 20
0

1

2

Wiki-Talk

4 8 12 16 20
0

10

20

30

Orkut

4 8 12 16 20
0

1

2

Web-Edu

4 8 12 16 20
0

20

40

60

Clique Size (k)

Friendster

Core Approx. (= -0.5) Degree PivotScale (with Heuristic)

Fig. 10. Total execution time for counting varied clique sizes using only our core approximation, only the degree ordering, or the ordering selected by our
heuristic. Our heuristic always selects the correct ordering and it does not add significant overhead. Using our heuristic to select a better ordering results in
a 0.99− 1.43× (geometric mean: 1.10×) speedup over using only our core approximation ordering.

1 2 4 8 163264
1
2
4
8

16
32
64

Pa
ra

lle
l S

pe
ed

up

DBLP

1 2 4 8 163264

As-Skitter

1 2 4 8 163264

Baidu

1 2 4 8 163264

Wiki-Talk

1 2 4 8 163264

Orkut

1 2 4 8 163264

Web-Edu

1 2 4 8 163264

Friendster

 Implementation k
Ideal Scaling PivotScale (dense) PivotScale (sparse) PivotScale (remap) 6 12

Number of Threads

Fig. 11. Parallel scalability of PivotScale with different subgraph structures for counting 6-cliques or 12-cliques. The time for each run includes the
time to compute the heuristic, the ordering phase, and the counting phase. Scaling is self-relative, i.e. normalized to the single core performance of that
implementation. For most graphs, all of our PivotScale structures scale enjoy good scalability. For Baidu and Web-Edu, memory becomes a bottleneck for
our dense implementation at 32 threads, but our more compact sparse and remapped structures avoid this and scale linearly even beyond 32 threads. DBLP
is small so all implementations have insufficient parallelism. PivotScale (remap) is the fastest in absolute performance.

at 32 threads. In contrast, by compressing the subgraph using
PivotScale’s sparse or remapped structures, we are able to
achieve linear scaling for both of those graphs. This greatly
increased scalability is largely enabled by the more efficient
memory use of our subgraph data structures.

Scaling for DBLP plateaus beyond 8 threads as it is a
small graph that does not have sufficient parallel work for the
duration of the run. Testing various schedulers with different
task granularities does not improve performance. Despite poor
scalability, the total execution time is very small (0.04 s for
our remapped structure). Our remapped subgraph structure is
the fastest overall (Figure 9), so we use it in the rest of the
evaluation.

G. Comparison Against Prior Work

We compare PivotScale against prior work for counting
cliques of various sizes (Figure 12 & Table V). When reporting
the execution time, we include all preprocessing, including
the time required to compute our heuristic and directionalize
the graph. Consistent with prior work, we exclude the time
required to read and build the undirected input graph. Each
execution uses 64 threads, and we report the average time
of two trials to account for variance. We use GPU-Pivot’s
reported execution times for the NVIDIA Volta V100 and

Ampere A100 GPUs, but those times do not include cliques
larger than k = 11 [20].

We observe that Arb-Count’s execution time increases
greatly with clique size (k) for most graphs, while the pivoting
approaches increase much more slowly (Figure 12), and this
is consistent with prior findings. A pivoting approach has a
high fixed cost irrespective of target clique size, and counting
larger cliques incurs nearly negligible additional time. Initially,
Pivoter starts to outperform the enumeration approach (Arb-
Count) on CPUs at k = 10. Most notably, our work with
PivotScale’s parallel scalability enables pivoting to be more
advantageous earlier, at k = 8 for larger graphs. PivotScale
generally outperforms or at least matches the performance of
GPU-Pivot.

We also observe that the total execution time for GPU-Pivot
increases significantly with target clique size (k) on clique-
rich graphs such as As-Skitter and Orkut (Figure 12). We
suspect this is due to an increased number of intersection
operations while building the subgraph in each recursive level.
Additionally, building a single subgraph per-warp does not
allow for efficient use of the GPU’s hardware resources, in-
hibiting scalability. Our approach is more scalable for counting
large cliques in challenging graphs, and the execution time
for PivotScale does not increase as significantly with k. Both

6 8 10 12

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(s
) DBLP

6 8 10 12

100

101

As-Skitter

6 8 10 12
10 1

100

101

Baidu

6 8 10 12

100

101

102
Wiki-Talk

6 8 10 12

101

102

103
Orkut

6 8 10 12
100

101

102

Web-Edu

Pivoter Arb-Count PivotScale GPU-Pivot (V100) GPU-Pivot (A100)
6 8 10 12

102

103

Friendster

Clique Size (k)

Fig. 12. Total execution time (on a log scale) required for counting cliques of different sizes on the input graphs for each of the CPU algorithms (Pivoter [18],
Arb-Count [19], PivotScale) and GPU-Pivot running on an NVIDIA Volta V100 and an NVIDIA Ampere A100 GPU. All CPU implementations are executed
using 64 threads. Lower is better. GPU-Pivot does not report times for k > 11. We observe that the lone enumeration-based algorithm (Arb-Count) takes
longer for higher values of k. In contrast, the pivoting-based approaches typically do not get slower for higher k. Due to improved parallel scaling, PivotScale
is much faster than Pivoter, despite requiring constant time for various k. This allows the inflection point at which pivoting starts to win to decrease from
k = 10 to k = 8 on larger graphs. Since the pivoting algorithm is unable to fully utilize the hardware capabilities of a GPU, we do not observe a significant
improvement in performance of GPU-Pivot from the V100 to the A100. Due to better scaling, PivotScale routinely outperforms GPU-Pivot with the exception
of lower k on Friendster with the A100. The raw data is available in Table V.

Graph Algorithm k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13
DBLP Pivoter 1.50 1.00 1.50 1.00 1.50 1.00 1.50 1.50

Arb-Count 0.13 2.07 32.11 450.86 > 2h > 2h > 2h > 2h
GPU-Pivot (V100) 0.11 0.11 0.11 0.11 0.11 0.11 - -
GPU-Pivot (A100) 0.11 0.11 0.11 0.11 0.11 0.11 - -
PivotScale 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

As-Skitter Pivoter 16.26 17.27 17.77 17.74 18.26 17.69 17.78 18.29
Arb-Count 0.38 2.51 18.34 125.52 754.08 4189.38 > 2h > 2h
GPU-Pivot (V100) 1.01 1.27 1.59 1.84 1.78 1.78 - -
GPU-Pivot (A100) 0.96 1.31 1.73 1.97 2.22 2.15 - -
PivotScale 0.46 0.52 0.55 0.56 0.56 0.56 0.55 0.55

Baidu Pivoter 19.44 19.52 19.11 20.03 19.31 18.85 18.94 19.57
Arb-Count 0.07 0.07 0.07 0.08 0.11 0.22 0.45 0.90
PivotScale 0.20 0.19 0.19 0.19 0.19 0.18 0.18 0.18

Wiki-Talk Pivoter 33.42 35.91 36.91 35.93 35.91 35.93 36.45 35.95
Arb-Count 0.28 1.32 4.60 13.24 28.60 51.30 73.87 95.76
PivotScale 0.76 0.87 0.91 0.92 0.91 0.91 0.91 0.90

Orkut Pivoter 654.13 753.08 812.71 858.04 889.39 904.02 909.91 912.99
Arb-Count 5.35 18.58 69.89 281.03 1294.34 > 2h > 2h > 2h
GPU-Pivot (V100) 17.23 20.33 26.18 33.64 39.96 48.10 - -
GPU-Pivot (A100) 14.05 17.32 22.48 29.82 38.22 44.82 - -
PivotScale 16.72 19.48 21.47 24.97 27.91 29.83 30.32 30.20

Web-Edu Pivoter 45.29 46.36 47.84 47.82 47.25 48.79 50.47 53.35
Arb-Count 456.47 > 2h > 2h > 2h > 2h > 2h > 2h > 2h
PivotScale 0.85 1.13 1.48 1.73 1.84 1.83 1.84 1.86

Friendster Pivoter 3,064.48 3,097.26 3,054.73 3,032.45 3,050.13 3,063.23 3,070.55 3,080.26
Arb-Count 30.77 44.19 166.53 2132.27 > 2h > 2h > 2h > 2h
GPU-Pivot (V100) 63.87 66.54 67.06 71.40 71.05 71.45 - -
GPU-Pivot (A100) 47.32 47.41 47.07 46.12 45.22 44.31 - -
PivotScale 58.48 58.88 58.69 58.12 57.66 56.87 56.19 55.40

TABLE V
TOTAL EXECUTION TIME FOR COUNTING (IN SECONDS) k-CLIQUES USING PIVOTER [18], ARB-COUNT [19], GPU-PIVOT [20] AND PIVOTSCALE. WE

USE THE TIMES REPORTED BY GPU-PIVOT IN THEIR PAPER. EVERY OTHER ALGORITHM IS EXECUTED USING 64 THREADS ON THE SAME MACHINE
(CPU) UNDER THE SAME CONDITIONS. THE EXECUTION TIMES REPORTED INCLUDE ANY PREPROCESSING, INCLUDING GRAPH ORDERING, BUT IGNORE

GRAPH READING TIMES. THE FASTEST EXECUTION TIMES ARE DENOTED IN BOLD.

GPU-Pivot and PivotScale do not show significant variation in
execution time relative to k on graphs where work does not
increase significantly (e.g. DBLP and Friendster).

H. Comparison on LiveJournal

LiveJournal is a computationally challenging graph with
many cliques and we perform this evaluation separately since
using less than an optimized implementation at full parallelism
results in unreasonable execution times. We observe that the
execution time of both implementations increases significantly
with k for LiveJournal (Figure 13), compared to As-Skitter and

Orkut, other relatively challenging graphs (Figure 12). The
original Pivoter code includes an optimization to terminate
early to count smaller cliques, specifically for LiveJournal.
LiveJournal’s density causes the recursion depth to grow
dramatically with the target clique size k. Increasing k from
6 to 11 causes 942.16× more recursive function calls for
LiveJournal, but for As-Skitter and Orkut, the same increase
in k only results in 1.61× more calls.

We also observe that the execution time of PivotScale is less
than that of GPU-Pivot for all k (Figure 13 and Table VI). In
their paper, the authors of Pivoter report an execution time

6 7 8 9 10 11 12 13
Clique Size (k)

103

104

105
To

ta
l E

xe
cu

tio
n

Ti
m

e
(s

) GPU-Pivot (V100)
GPU-Pivot (A100)
PivotScale

Fig. 13. Total execution times for GPU-Pivot and PivotScale for LiveJournal
while scaling clique size. Since this graph has many cliques, the execution
times for both increases dramatically with k, unlike the other input graphs.

k
Number of PivotScale GPU-Pivot GPU-Pivot
k-cliques (V100) (A100)

6 10,990,740,312,954 172.92 379.88 301.77
7 449,022,426,169,164 750.00 1,639.54 1,396.37
8 16,890,998,195,437,619 2,650.87 6,850.99 5,467.18
9 587,802,675,586,713,160 7,906.71 - -

10 18,973,061,151,392,022,301 21,172.76 - -
11 568,916,187,227,810,700,115 49,213.59 - -
12 15,868,894,086,996,727,006,147 108,621.55 - -
13 412,397,238,639,623,631,270,670 223,130.87 - -

TABLE VI
NUMBER OF K-CLIQUES IN LIVEJOURNAL FOR VARIED k AND THE

ASSOCIATED EXECUTION TIME (IN SECONDS) FOR PIVOTSCALE AND
GPU-PIVOT. THE BEST EXECUTION TIME IS DENOTED IN BOLD.
GPU-PIVOT DOES NOT REPORT EXECUTION TIMES FOR k > 8.

PIVOTSCALE IS FASTER THAN GPU-PIVOT FOR ALL REPORTED k. THIS IS
THE FIRST WORK TO REPORT COUNTS FOR k > 10.

of 5.9 days for counting 10-cliques in LiveJournal [18]. With
PivotScale’s improved scalability, we are able to count 10-
cliques in under 6 hours using 64 threads. This is the first work
to report counts for cliques larger than k = 10 in LiveJournal
(Table VI).

Pivoting algorithms are more suited for counting large
cliques in graphs and enumeration algorithms perform well for
smaller cliques. A hybrid algorithm which performs well for
all clique sizes can easily be implemented by switching with
a simple heuristic e.g. (k ≥ 8). Due to its improved parallel
scalability in both ordering and counting phases, PivotScale
typically outperforms current state-of-the-art CPU and GPU
algorithms for large clique sizes (k ≥ 8).

VII. RELATED WORK

Chiba and Nishizeki present one of the fastest sequential
algorithms for clique counting [40]. The algorithm is simple
and efficient, but it includes a sequential step which prevents
it from scaling to massive real-world graphs.

Finocchi et al. present a scalable clique counting algorithm
that uses a degree ordering and is built on MapReduce [41].
KClist was the first work to parallelize Chiba and Nishizeki’s
algorithm by separating the ordering and counting phases [17].
More recently, Shi et al. present Arb-Count, a work-efficient
parallel algorithm with polylogarithmic span [19]. It is the
state-of-the-art enumeration-based clique counting algorithm.
Aside from the core and degree ordering, they also implement

the Barenboim-Elkin [42] and Goodrich-Pszona [43] order-
ings. Lonkar and Beamer present communication reducing
optimizations to improve the scalability of enumeration-based
clique counting [44].

Li et al. provide an optimized parallel algorithm which
orders the graph on a coloring-based method to improve
counting phase perfromance [45]. The search space their work
prunes is inherent to the enumeration approach, and pivoting
already avoids that redundant work. Lastly, GPU-Pivot im-
plements enumeration and pivoting-based k-clique counting
algorithms on GPUs [20]. Aside from the aforementioned
dedicated solvers, various GPM frameworks are also capable
of counting cliques in large graphs [12]–[16].

In addition to exact clique counting, related problems like
maximal clique enumeration and approximate clique counting
have also been heavily studied. Maximal clique enumera-
tion involves finding cliques which cannot be extended any
further [22]–[24], [46], [47]. Other recent works attempt to
approximate k-clique counts in graphs through sampling [48]–
[51] or probabilistic hashing [52].

VIII. CONCLUSION

In this work, we take a holistic approach to improve the
parallel scalability of clique counting. We provide in-depth
analysis of how the ordering phase impacts the counting phase.
With inspiration from prior work, we create the parallel core
ordering approximation which allows PivotScale to benefit
from faster ordering times without sacrificing algorithmic
efficiency while counting. We use our analysis to develop a
heuristic which predicts which ordering will lead to the fastest
counting, and consequently, fastest overall execution time for
a given input graph. We also improve the parallel scalability
of counting by reducing memory usage and lookup overheads
with a compact subgraph structure.

Pivoter made finding large cliques in large graphs practi-
cal, and our efficient parallelization furthers that scalability.
PivotScale achieves total speedups of 25.66− 110.58× (Geo-
metric Mean: 47.05×) over Pivoter while counting k-cliques.
PivotScale outperforms the fastest enumeration implementa-
tion (Arb-Count) for a smaller clique size than before. On
challenging graphs with many cliques, PivotScale scales better
with clique size, allowing it to outperform GPU-Pivot while
counting larger cliques.

Our optimizations and analysis can be applied to sim-
ilar problems within Graph Pattern Mining. In this work,
we focus on counting the total number of k-cliques,
but simple changes to our code could easily enable per-
vertex k-clique counts. To enable others to benefit from
our optimizations, we open-source our code publicly at:
https://github.com/ucsc-vama/pivotscale

ACKNOWLEDGMENT

We thank Seshadhri Comandur for suggesting this project
and helpful guidance along the way. We also thank Sabyasachi
Basu and Daniel Paul-Pena for their advice during the rebuttal.
Research partially funded by NSF Award Number 2119154,
Principles and Practice of Scalable Systems (PPoSS).

REFERENCES

[1] E. Gregori, L. Lenzini, and S. Mainardi, “Parallel k-clique community
detection on large-scale networks,” Transactions on Parallel and Dis-
tributed Systems, vol. 24, no. 8, pp. 1651–1660, 2013.

[2] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
Nature, vol. 435, no. 7043, pp. 814–818, 2005.

[3] F. Hao, G. Min, Z. Pei, D.-S. Park, and L. T. Yang, “k-clique community
detection in social networks based on formal concept analysis,” Systems
Journal, vol. 11, no. 1, pp. 250–259, 2017.

[4] Y. Fang, K. Yu, R. Cheng, L. V. Lakshmanan, and X. Lin, “Ef-
ficient algorithms for densest subgraph discovery,” arXiv preprint
arXiv:1906.00341, 2019.

[5] L. Pan and E. E. . Santos, “An anytime-anywhere approach for maximal
clique enumeration in social network analysis,” in International Confer-
ence on Systems, Man and Cybernetics (SMC), 2008, pp. 3529–3535.

[6] R. A. Rossi, D. F. Gleich, and A. H. Gebremedhin, “Parallel maximum
clique algorithms with applications to network analysis,” Journal on
Scientific Computing, vol. 37, no. 5, pp. C589–C616, 2015.

[7] S. Manoharan and Sathish, “Patient diet recommendation system using
k clique and deep learning classifiers,” Journal of Artificial Intelligence
and Capsule Networks, vol. 2, no. 2, pp. 121–130, 2020.

[8] K. X. P. Vilakone and D. Park, “Personalized movie recommendation
system combining data mining with the k-clique method,” Journal of
Information Processing Systems, vol. 15, no. 5, pp. 1141–1155, Oct.
2019.

[9] T. Marschall, I. G. Costa, S. Canzar, M. Bauer, G. W. Klau, A. Schliep,
and A. Schönhuth, “CLEVER: clique-enumerating variant finder,”
Bioinformatics, vol. 28, no. 22, pp. 2875–2882, 10 2012. [Online].
Available: https://doi.org/10.1093/bioinformatics/bts566

[10] E. T. T. Matsunaga, C. Yonemori and M. Muramatsu, “Clique-based data
mining for related genes in a biomedical database,” BMC Bioinformatics,
vol. 10, no. 205, 2009.

[11] K. C. D. Bahadur, T. Akutsu, E. Tomita, T. Seki, and A. Fujiyama, “Point
matching under non-uniform distortions and protein side chain packing
based on an efficient maximum clique algorithm,” Genome Informatics,
vol. 13, pp. 143–152, 2002.

[12] X. Chen, R. Dathathri, G. Gill, L. Hoang, and K. Pingali, “Sandslash: a
two-level framework for efficient graph pattern mining,” in International
Conference on Supercomputing (ICS), 2021, pp. 378–391.

[13] X. Chen, R. Dathathri, G. Gill, and K. Pingali, “Pangolin: An efficient
and flexible graph mining system on cpu and gpu,” VLDB, vol. 13, no. 8,
pp. 1190–1205, 2020.

[14] K. Jamshidi, R. Mahadasa, and K. Vora, “Peregrine: a pattern-aware
graph mining system,” in European Conference on Computer Systems
(EuroSys), 2020, pp. 1–16.

[15] C. H. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and
A. Aboulnaga, “Arabesque: a system for distributed graph mining,” in
Symposium on Operating Systems Principles (SOSP), 2015, pp. 425–
440.

[16] V. Dias, C. H. Teixeira, D. Guedes, W. Meira, and S. Parthasarathy,
“Fractal: A general-purpose graph pattern mining system,” in Interna-
tional Conference on Management of Data (MOD), 2019, pp. 1357–
1374.

[17] M. Danisch, O. Balalau, and M. Sozio, “Listing k-cliques in sparse
real-world graphs,” in World Wide Web Conference (WWW), 2018, pp.
589–598.

[18] S. Jain and C. Seshadhri, “The power of pivoting for exact clique
counting,” in International Conference on Web Search and Data Mining
(WSDM), 2020, pp. 268–276.

[19] J. Shi, L. Dhulipala, and J. Shun, “Parallel clique counting and peeling
algorithms,” in Conference on Applied and Computational Discrete
Algorithms (ACDA). SIAM, 2021, pp. 135–146.

[20] M. Almasri, I. E. Hajj, R. Nagi, J. Xiong, and W.-m. Hwu, “Parallel
k-clique counting on gpus,” in International Conference on Supercom-
puting (ICS), 2022, pp. 1–14.

[21] D. W. Matula and L. L. Beck, “Smallest-last ordering and clustering
and graph coloring algorithms,” Journal of the ACM (JACM), vol. 30,
no. 3, pp. 417–427, 1983.

[22] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an
undirected graph,” Communications of the ACM, vol. 16, no. 9, pp.
575–577, 1973.

[23] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time complex-
ity for generating all maximal cliques and computational experiments,”
Theoretical computer science, vol. 363, no. 1, pp. 28–42, 2006.

[24] D. Eppstein, M. Löffler, and D. Strash, “Listing all maximal cliques
in sparse graphs in near-optimal time,” in International Symposium on
Algorithms and Computation (ISAAC). Springer, 2010, pp. 403–414.

[25] M. Besta, A. Carigiet, K. Janda, Z. Vonarburg-Shmaria, L. Gianinazzi,
and T. Hoefler, “High-performance parallel graph coloring with strong
guarantees on work, depth, and quality,” in International Conference for
High Performance Computing, Networking, Storage and Analysis (SC).
IEEE, 2020, pp. 1–17.

[26] N. S. Dasari, R. Desh, and M. Zubair, “Park: An efficient algorithm for
k-core decomposition on multicore processors,” in IEEE International
Conference on Big Data (Big Data). IEEE, 2014, pp. 9–16.

[27] H. Kabir and K. Madduri, “Parallel k-core decomposition on multicore
platforms,” in IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2017, pp. 1482–1491.

[28] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Technical Report
1999-66, November 1999.

[29] P. Bonacich, “Factoring and weighting approaches to status scores and
clique identification,” Journal of mathematical sociology, vol. 2, no. 1,
pp. 113–120, 1972.

[30] M. E. Newman, “Assortative mixing in networks,” Physical review
letters, vol. 89, no. 20, p. 208701, 2002.

[31] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[32] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” in ACM SIGKDD workshop on mining data
semantics, 2012, pp. 1–8.

[33] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[34] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: densi-
fication laws, shrinking diameters and possible explanations,” in Inter-
national Conference on Knowledge Discovery in Data Mining (KDD),
2005, pp. 177–187.

[35] X. Niu, X. Sun, H. Wang, S. Rong, G. Qi, and Y. Yu, “Zhishi.me
– weaving chinese linking open data,” in International Semantic Web
Conference (ISWC). Springer, 2011, pp. 205–220.

[36] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015. [Online].
Available: https://networkrepository.com

[37] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks in
social media,” in SIGCHI conference on human factors in computing
systems, 2010, pp. 1361–1370.

[38] ——, “Predicting positive and negative links in online social networks,”
in International Conference on World Wide Web (WWW), 2010, pp. 641–
650.

[39] T. A. Davis and Y. Hu, “The university of florida sparse matrix collec-
tion,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, pp. 1–25, 2011.

[40] N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algorithms,”
SIAM Journal on Computing, vol. 14, no. 1, pp. 210–223, 1985.

[41] I. Finocchi, M. Finocchi, and E. G. Fusco, “Clique counting in mapre-
duce: Algorithms and experiments,” Journal of Experimental Algorith-
mics (JEA), vol. 20, pp. 1–20, 2015.

[42] L. Barenboim and M. Elkin, “Sublogarithmic distributed mis algorithm
for sparse graphs using nash-williams decomposition,” Distributed Com-
puting, vol. 22, no. 5-6, pp. 363–379, 2010.

[43] M. T. Goodrich and P. Pszona, “External-memory network analysis
algorithms for naturally sparse graphs,” in European Symposium on
Algorithms (ESA). Springer, 2011, pp. 664–676.

[44] A. Lonkar and S. Beamer, “Accelerating clique counting in sparse real-
world graphs via communication-reducing optimizations,” arXiv preprint
arXiv:2112.10913, 2021.

[45] R. Li, S. Gao, L. Qin, G. Wang, W. Yang, and J. X. Yu, “Ordering
heuristics for k-clique listing.” VLDB, 2020.

[46] J. Cheng, L. Zhu, Y. Ke, and S. Chu, “Fast algorithms for maximal clique
enumeration with limited memory,” in ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2012, pp. 1240–
1248.

[47] W. Deng, W. Zheng, and H. Cheng, “Accelerating maximal clique
enumeration via graph reduction,” VLDB, vol. 17, no. 10, pp. 2419–
3431, 2024.

[48] S. Jain and C. Seshadhri, “Provably and efficiently approximating near-
cliques using the turán shadow: Peanuts,” in The Web Conference, 2020,
pp. 1966–1976.

[49] X. Ye, R.-H. Li, Q. Dai, H. Chen, and G. Wang, “Lightning fast and
space efficient k-clique counting,” in The Web Conference, 2022, pp.
1191–1202.

[50] ——, “Efficient k-clique counting on large graphs: The power of color-
based sampling approaches,” IEEE Transactions on Knowledge and
Data Engineering, 2023.

[51] L. Chang, R. Gamage, and J. X. Yu, “Efficient k-clique count estimation
with accuracy guarantee,” VLDB, vol. 17, no. 11, pp. 3707–3719, 2024.

[52] M. Besta, C. Miglioli, P. S. Labini, J. Tětek, P. Iff, R. Kanaka-
giri, S. Ashkboos, K. Janda, M. Podstawski, G. Kwaśniewski et al.,
“Probgraph: High-performance and high-accuracy graph mining with
probabilistic set representations,” in International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). IEEE,
2022, pp. 1–17.

