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Abstract—Breadth-First Search is an important kernel used by
many graph-processing applications. In many of these emerging
applications of BFS, such as analyzing social networks, the
input graphs are low-diameter and scale-free. We propose a
hybrid approach that is advantageous for low-diameter graphs,
which combines a conventional top-down algorithm along with
a novel bottom-up algorithm. The bottom-up algorithm can
dramatically reduce the number of edges examined, which in
turn accelerates the search as a whole. On a multi-socket server,
our hybrid approach demonstrates speedups of 3.3–7.8 on a range
of standard synthetic graphs and speedups of 2.4–4.6 on graphs
from real social networks when compared to a strong baseline.
We also typically double the performance of prior leading shared
memory (multicore and GPU) implementations.

I. INTRODUCTION

Graph algorithms are becoming increasingly important, with
applications covering a wide range of scales. Warehouse-
scale computers run graph algorithms that reason about vast
amounts of data, with applications including analytics and rec-
ommendation systems [16, 19]. On mobile clients, graph algo-
rithms are important components of recognition and machine-
learning applications [18, 28].

Unfortunately, due to a lack of locality, graph applica-
tions are often memory-bound on shared-memory systems or
communication-bound on clusters. In particular, Breadth-First
Search (BFS), an important building block in many other graph
algorithms, has low computational intensity, which exacerbates
the lack of locality and results in low overall performance.
To accelerate BFS, there has been significant prior work to
change the algorithm and data structures, in some cases by
adding additional computational work, to increase locality and
boost overall performance [1, 8, 15, 27]. However, none of
these previous schemes attempt to reduce the number of edges
examined.

In this paper, we present a hybrid BFS algorithm that
combines a conventional top-down approach with a novel
bottom-up approach. By examining substantially fewer edges,
the new algorithm obtains speedups of 3.3–7.8 on synthetic
graphs and 2.4–4.6 on real social network graphs. In the
top-down approach, nodes in the active frontier search for
an unvisited child, while in our new bottom-up approach,
unvisited nodes search for a parent in the active frontier. In
general, the bottom-up approach will yield speedups when
the active frontier is a substantial fraction of the total graph,
which commonly occurs in small-world graphs such as social
networks.

The bottom-up approach is not always advantageous, so we
combine it with the conventional top-down approach, and use a
simple heuristic to dynamically select the appropriate approach
to use at each step of BFS. We show that our dynamic on-line
heuristic achieves performance within 25% of the optimum
possible using an off-line oracle. Our hybrid implementation
also provides typical speedups of 2 or greater over prior state-
of-the-arts for multicore [1, 10, 15] and GPUs [20] when
utilizing the same graphs and the same or similar hardware.
An early version of this algorithm [5] running on a stock
quad-socket Intel server was ranked 17th in the Graph500
November 2011 rankings [14], achieving the fastest single-
node implementation and the highest per-core processing rate,
and outperforming specialized architectures and clusters with
more than 150 sockets.

II. GRAPH PROPERTIES

Graphs are a powerful and general abstraction that allow
a large number of problems to be represented and solved
using the same algorithmic machinery. However, there is often
substantial performance to be gained by optimizing algorithms
for the types of graph present in a particular target workload.

We can characterize graphs using a few metrics, in particular
their diameter and degree distribution. Graphs representing
meshes used for physical simulations typically have very high
diameters and degrees bounded by a small constant. As a
result, they are amenable to graph partitioning when mapping
to parallel systems, as they have mostly local communication
and a relatively constant amount of work per vertex, which
simplifies load-balancing.

In contrast, graphs taken from social networks tend to
be both small-world and scale-free. A small-world graph’s
diameter grows only proportional to the logarithm of the
number of nodes, resulting in a low effective diameter [24].
This effect is caused by a subset of edges connecting parts of
the graph that would otherwise be distant. A scale-free graph’s
degree distribution follows a power law, resulting in a few,
very high-degree nodes [4]. These properties complicate the
parallelization of graph algorithms to efficiently analyze social
networks. Graphs with the small-world property are often hard
to partition because the low diameter and cross edges make
it difficult to reduce the size of a cut. Meanwhile, scale-free
graphs are challenging to load-balance because the amount of
work per node is often proportional to the degree which can
vary by several orders of magnitude.
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function breadth-first-search(vertices, source)
frontier ← {source}
next ← {}
parents ← [-1,-1,. . . -1]
while frontier 6= {} do

top-down-step(vertices, frontier, next, parents)
frontier ← next
next ← {}

end while
return tree

Fig. 1. Conventional BFS Algorithm

function top-down-step(vertices, frontier, next, parents)
for v ∈ frontier do

for n ∈ neighbors[v] do
if parents[n] = -1 then

parents[n] ← v
next ← next ∪ {n}

end if
end for

end for

Fig. 2. Single Step of Top-Down Approach

III. CONVENTIONAL TOP-DOWN BFS

Breadth-First Search (BFS) is an important building block
of many graph algorithms, and it is commonly used to test
for connectivity or compute the single-source shortest paths
of unweighted graphs. Starting from the source vertex, the
frontier expands outwards during each step, visiting all of
the vertices at the same depth before visiting any at the next
depth (Figure 1). During a step of the conventional top-down
approach (Figure 2), each vertex checks all of its neighbors
to see if any of them are unvisited. Each previously unvisited
neighbor is added to the frontier and marked as visited by
setting its parent variable. This algorithm yields the BFS tree,
which spans the connected component containing the source
vertex. Other variants of BFS may record other attributes
instead of the parent at each node in the BFS tree, such as
a simple boolean variable that marks whether it was visited,
or an integer representing its depth in the tree.

The behavior of BFS on social networks follows directly
from their defining properties: small-world and scale-free.
Because social networks are small-world graphs, they have
a low effective diameter, which reduces the number of steps
required for a BFS, which in turn causes a large fraction of
the vertices to be visited during each step. The scale-free
property requires some nodes to have much higher degrees
than average, allowing the frontier growth rate to outpace the
average degree. As a result of these two properties, the size of
the frontier ramps up and down exponentially during a BFS of
a social network. Even if a social network graph has hundreds
of millions of vertices, the vast majority will be reached in
the first few steps.

The majority of the computational work in BFS is checking
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Fig. 3. Breakdown of edges in the frontier for a sample search on kron27
(Kronecker generated 128M vertices with 2B undirected edges) on the 16-core
system.
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Fig. 4. Breakdown of edges in the frontier for a sample search on kron27
(Kronecker generated 128M vertices with 2B undirected edges) on the 16-core
system.

edges of the frontier to see if the endpoint has been visited.
The total number of edge checks in the conventional top-down
algorithm is equal to the number of edges in the connected
component containing the source vertex, as on each step every
edge in the frontier is checked.

Figure 3 shows a breakdown of the result of each edge
check for each step during a conventional parallel queue-based
top-down BFS traversal on a Kronecker-generated synthetic
graph (used for the Graph500 benchmark [14]). The middle
steps (2 and 3) consume the vast majority of the runtime,
which is unsurprising since the frontier is then at its largest
size, requiring many more edges to be examined. During these
steps, there are a great number of wasted attempts to become
the parent of a neighbor. Failures occur when the neighbor
has already been visited, and these can be broken down into
four different categories based on their depth relative to the
candidate parent: valid parent, peer, and failed child. A valid
parent is any neighbor at depth d − 1 of a vertex at depth d.
A peer is any neighbor at the same depth. A failed child is
any neighbor at depth d+ 1 of a vertex at depth d, but at the
time of examination it has already been claimed by another



vertex at depth d. Successful checks result in a claimed child.
Figure 3 shows most of the edge checks do fail and represent
redundant work, since a vertex in a correct BFS tree only
needs one parent.

Implementations of this same basic algorithm can vary in a
number of performance-impacting ways, including: data struc-
tures, traversal order, parallel work allocation, partitioning,
synchronization, or update procedure. The process of checking
if neighbors have been visited can result in many costly ran-
dom accesses. An effective optimization for shared-memory
machines with large last-level caches is to use a bitmap to
mark nodes that have already been visited [1]. The bitmap
can often fit in the last-level cache, which prevents many of
those random accesses from touching off-chip DRAM. These
optimizations speed up the edge checks but do not reduce the
number of checks required.

The theoretical minimum for the number of edges that need
to be examined in the best case is the number of vertices in the
BFS tree minus one, since that is how many edges are required
to connect it. For the example in Figure 3, only 63,036,116
vertices are in the BFS tree, so at least 63,036,115 edges
need to be considered, which is about 1

67

th of all the edge
examinations that would happen during a top-down traversal.
This factor of 67 is substantially larger than the input degree
of 16 for two reasons. First, the input degree is for undirected
edges, but during a top-down search each edge will be checked
from both endpoints, doubling the number of examinations.
Secondly, there are a large number of vertices of zero degree,
which reduces the size of the main connected component and
also further increases the effective degree of the vertices it
contains. There is clearly substantial room for improvement
by checking fewer edges, although in the worst case, every
edge might still need to be checked.

Figure 4 zooms in on the edge check results of Figure 3
for the sample search. This progression of neighbor types is
typical among the social networks examined. During the first
few steps, the percentage of claimed children is high, as the
vast majority of the graph is unexplored, enabling most edge
checks to succeed. During the next few steps, the percentage
of failed children rises, which is unsurprising since the frontier
has grown larger, as multiple valid parents are fighting over
children. As the frontier reaches its largest size, the percentage
of peer edges dominates. Since the frontier is such a large
fraction of the graph, many edges must connect vertices within
the frontier. As the frontier size rapidly decreases after its apex,
the percentage of valid parents rises since such a large fraction
of edges were in the previous step’s frontier.

IV. BOTTOM-UP BFS

When the frontier is large, there exists an opportunity to
perform the BFS traversal more efficiently by searching in the
reverse direction, that is, going bottom-up. Note that in Step
3 there are many valid parents, but the other ends of these
edges mostly resulted in failed children during Step 2. We can
exploit this phenomenon to reduce the total number of edges
examined. Instead of each vertex in the frontier attempting

function bottom-up-step(vertices, frontier, next, parents)
for v ∈ vertices do

if parents[v] = -1 then
for n ∈ neighbors[v] do

if n ∈ frontier then
parents[v] ← n
next ← next ∪ {v}
break

end if
end for

end if
end for

Fig. 5. Single Step of Bottom-Up Approach

to become the parent of all of its neighbors, each unvisited
vertex attempts to find any parent among its neighbors. A
neighbor can be a parent if the neighbor is a member of the
frontier, which can be determined efficiently if the frontier is
represented by a bitmap. The advantage of this approach is
that once a vertex has found a parent, it does not need to
check the rest of its neighbors. Figure 4 demonstrates that
for some steps, a substantial fraction of neighbors are valid
parents, so the probability of not needing to check every edge
is high. Figure 5 shows the algorithm for a single step of this
approach.

The bottom-up approach also removes the need for some
atomic operations in a parallel implementation. In the top-
down approach, there could be multiple parallel writers to the
same child, so atomic operations are needed to ensure mutual
exclusion. With the bottom-up approach, only the child writes
to itself, removing any contention. This advantage, along with
the potential reduction of edges checked, comes at the price
of serializing the work for any one vertex, but there is still
massive parallelism between the work for different vertices.
The bottom-up approach is advantageous when a large fraction
of the vertices are in the frontier, but will result in more work
if the frontier is small. Hence, an efficient BFS implementation
must combine both the top-down and bottom-up approaches.

If the graph is undirected, performing the bottom-up ap-
proach requires no modification to the graph data structures as
both directions are already represented. If the graph is directed,
the bottom-up step will require the inverse graph, which could
nearly double the graph’s memory footprint.

V. HYBRID ALGORITHM

The pairing of the top-down approach with the bottom-
up approach is complementary, since when the frontier is its
largest, the bottom-up approach will be at its best whereas
the top-down approach will be at its worst, and vice versa.
The runtime for either the top-down approach or the bottom-
up approach is roughly proportional to the number of edges
examined. The top-down approach will examine every edge
in the frontier while the bottom-up approach could examine
every edge attached to an unvisited vertex, but hopefully fewer.
Figure 6 illustrates this behavior by showing the time per
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Fig. 6. Sample search on kron27 (Kronecker 128M vertices with 2B
undirected edges) on the 16-core system.

step for each approach using the same example search as in
Section III. As the size of the frontier ramps up, the time per
step of the top-down approach rises correspondingly, but the
time per step for the bottom-up approach drops.

Our hybrid algorithm uses the top-down approach for steps
when the frontier is small and the bottom-up approach for steps
when the frontier is large. We begin each search with the top-
down approach and continue until the frontier becomes too
large, at which point we switch to the bottom-up approach.
Although it is difficult to tell from Figure 6, it is usually
worthwhile to switch back to the top-down approach for the
final steps. During some searches there can be a long tail, and
edges that are not in the connected component continue to
consume runtime using the bottom-up approach.

The step when transitioning from the top-down approach
to the bottom-up approach provides an enormous opportunity,
since all of the edge checks that would happen during the
top-down step (all of the edges in the frontier) are skipped.
For this reason, the optimum point to switch is typically when
the number of edges in the frontier is at its largest. This is
fortuitous, since the first bottom-up step will probably benefit
from a high percentage of valid parents, as Figure 4 shows.

To control the hybrid approach, we use a heuristic based
on: the number of edges to check from the frontier (mf ), the
number of vertices in the frontier (nf ), and the number of
edges to check from unexplored vertices (mu). These metrics
are efficient to compute, since they only require: summing the
degrees of all vertices in the frontier, counting the number of
vertices added to the frontier, or counting how many edges
have been checked. Note that with an undirected graph, mf

or mu might be counting some edges twice since each edge
will be explored from both ends. Figure 7 shows the overall
control heuristic, which employs two thresholds, CTB and
CBT , together with mf and nf .

Since the top-down approach will always check mf edges,
and the bottom-up approach will check at most mu, if mu is
ever less than mf , there is a guarantee that switching to the
bottom-up approach at that step will check less edges. Since
mu is an overly pessimistic upper-bound on the number of
edges the bottom-up approach will check, we use a tuning
parameter α. This results in the condition for switching from

Top-
Down

Bottom-
Up

mf  > CTB & growing

nf  < CBT & shrinking

mf  ≤ CTB nf  ≥ CBT

Start

(convert)

(convert)

Fig. 7. Control algorithm for hybrid algorithm. (convert) indicates the frontier
must be converted from a queue to a bitmap or vice versa between the
steps. Growing and shrinking refer to the frontier size, and although they
are typically redundant, their inclusion yields a speedup of about 10%.

top-down to bottom-up being:

mf >
mu

α
= CTB

Switching back to the top-down approach at the end should
occur when the frontier is small and there is no longer benefit
to the bottom-up approach. In addition to the overhead of
checking edges outside the main connected component, the
bottom-up approach becomes less efficient at the end because
it scans through all of the vertices to find any unvisited
ones. The heuristic to switch back attempts to detect when
the frontier is too small, for which we use another tuning
parameter β:

nf <
n

β
= CBT

When switching between approaches, the representation of
the frontier must be changed from the frontier queue used
in the conventional top-down approach to the frontier bitmap
used for the bottom-up approach. Different data structures are
used since the frontiers are of radically different sizes, and
the conversion costs are far less than the penalty of using the
wrong data structure. The bottom-up approach uses a frontier
bitmap to allow a constant-time test for whether a particular
node is in the frontier. The time to convert the frontier is
typically small, since it should be done when the frontier is
small.

VI. EVALUATION

A. Methodology

We evaluate the performance of our hybrid algorithm using
the graphs in Table I. Our suite of test graphs includes
both synthetic graphs as well as real social networks. The
synthetic graph generators as well as their parameters are
selected to match the Graph500 Competition [14] (Kronecker
(A,B,C) = (0.57,0.19,0.19)), and prior work [1, 15] (Uniform
Random and RMAT (A,B,C) = (0.45,0.25,0.15)). The real
social networks are taken from a variety of web crawls [6,
7, 12, 16, 21, 23, 25, 26].

We report results from three multi-socket server systems
(8-core, 16-core, 40-core) as shown in Table II. The 16-core
system is used for most of the evaluation, as it is representative
of the next generation of compute nodes for clusters. The



Abbreviation Graph # Vertices (M) # Edges (M) Degree Diameter Directed References
kron25 Kronecker 33.554 536.870 16.0 6 N [14, 17]
erdos25 Erdős–Réyni (Uniform Random) 33.554 268.435 8.0 8 N [3, 13]
rmat25 RMAT 33.554 268.435 8.0 9 Y [3, 9]
facebook Facebook Trace A 3.097 28.377 9.2 9 N [26]
flickr Flickr Follow Links 1.861 22.614 12.2 15 Y [21]
hollywood Hollywood Movie Actor Network 1.140 57.516 50.5 10 N [6, 7, 12, 23]
ljournal LiveJournal Social Network 5.363 79.023 14.7 44 Y [21]
orkut Orkut Social Network 3.073 223.534 72.8 7 N [21]
wikipedia Wikipedia Links 5.717 130.160 22.8 282 Y [25]
twitter Twitter User Follow Links 61.578 1,468.365 23.8 15 Y [16]

TABLE I
GRAPHS USED FOR EVALUATION

Name 8-core 16-core 40-core
Architecture Nehalem-EP Sandy Bridge-EP Westmere-EX
Intel Model X5550 E5-2680 E7-4860
Release Q1’09 Q1’12 Q2’11
Clock rate 2.67GHz 2.7GHz 2.26GHz
# Sockets 2 2 4
Cores/socket 4 8 10
Threads/socket 8 16 20
LLC/socket 8MB 20MB 24MB
DRAM Size 12GB 128GB 128GB

TABLE II
SYSTEM SPECIFICATIONS

40-core system is used to evaluate the parallel scalability of
our approach up to 80 threads. The 8-core system is used to
perform a direct comparison with prior work [15] utilizing the
same hardware and input graphs. On all platforms we disable
Turbo Boost to get consistent performance results.

Our algorithm implementations use C++ and OpenMP, and
store the graphs in Compressed Sparse Row (CSR) format
after removing duplicates and self-loops. For each plotted
data point, we perform BFS 64 times from pseudo-randomly
selected non-zero degree vertices and average the results. The
time for each search includes the time to allocate and initialize
search-related data structures (including parents).

To benchmark performance, we calculate the search rate
in Millions of Edges Traversed per Second (MTEPS) by
taking the ratio of the number of edges in the input graph to
the runtime. This metric is artificial in the sense that either
the top-down approach or the hybrid approach might not
check every edge, but this standardized performance metric is
similar in spirit to measuring MFLOPS for optimized matrix
multiplication in terms of the classic O(N3) algorithm.

B. Tuning α and β

First we determine values of α and β to use for hybrid-
heuristic, our hybrid implementation of BFS described above.
We first tune α before tuning β, as it has the greatest impact.
Sweeping α across a wide range demonstrates that once α is
sufficiently large (>12), BFS performance for many graphs is
relatively insensitive to its value (Figure 8). This is because the
frontier grows so rapidly that small changes in the transition
threshold do not change the step at which the switch occurs.
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Fig. 8. Performance of hybrid-heuristic on each graph relative to its best on
that graph for the range of α examined.
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Fig. 9. Performance of hybrid-heuristic on each graph relative to its best on
that graph for the range of β examined.

When trying to pick the best value for the suite, we select
α = 14 since it maximizes the average and minimum. Note
that even if a less-than-optimal α is selected, the hybrid-
heuristic algorithm still executes within 15–20% of its peak
performance on most graphs.

Tuning β is less important than tuning α. We select β = 24,
as this works well for the majority of the graphs (Figure 9).
The value of β has a smaller impact on overall performance
because the majority of the runtime is taken by the middle



steps when the frontier is at its largest, even when those
steps are accelerated by the bottom-up approach. We explore
a much larger range for β since it needs to change by orders
of magnitude in order to have an impact on which step the
heuristic will switch.

C. Comparing Algorithms

We first compare our own implementations of different
algorithms on a range of graphs. As a baseline, we use
two top-down parallel queue implementations. The top-down
implementation uses a typical parallel queue, much like the
omp-csr reference code [14]. We also create an optimized
version, top-down-check, which adds a bitmap to mark com-
pleted nodes. To determine the maximum benefit of our hybrid
approach and to evaluate the effectiveness of our on-line
heuristic (hybrid-heuristic), we also develop hybrid-oracle,
which repeatedly runs the algorithm trying all possible switch
points and then reports the best-performing to represent an
oracle-controlled hybrid.

We use the 16-core machine to compare both hybrid imple-
mentations (hybrid-heuristic and hybrid-oracle) against both
baselines (top-down and top-down-check) in Figure 10. The
hybrid provides large speedups across all of the graphs, with
an average speedup of 3.9 and a speedup no lower than 2.4.
The on-line heuristic often obtains performance within 10% of
the oracle. Also notice that the speedups are far greater than
the impact of a mistuned α or β in the heuristic. The bottom-
up approach by itself yields only modest speedups or even
slowdowns, which highlights the importance of combining it
with the top-down approach for the hybrid.

D. Explaining the Performance Improvement

The speedup of the hybrid approach demonstrated in Fig-
ure 10 is due to the reduction in edge examinations (Fig-
ure 11). In a classical top-down BFS, every edge in the
connected component containing the starting vertex will be
checked, and for an undirected graph, each edge will be
checked from both ends. The bottom-up approach skips check-
ing some edges in two ways. First, it passes the responsibility
of setting the parents variable from the parent to the child,
who can stop early once a parent is found. Secondly, it skips
all of the edges in the frontier on the step that transitions
from top-down to bottom-up. As shown by Figure 11, the edge
examinations skipped are roughly split between those skipped
in the transition and those skipped by the first bottom-up step.
Since the bottom-up approach is used when the frontier is
large, the top-down approach in the hybrid implementation
processes only a small fraction of the edges. Every edge
examination after the first bottom-up step is redundant, since
the first bottom-up step will have attempted to examine every
edge attached to an unvisited vertex. Since the size of the
frontier decreases so rapidly, this redundancy is typically
negligible. Unsurprisingly, the graphs with the least speedup
(flickr and wikipedia), skip fewer edges and check
the most redundant edges. They have a substantially higher

effective diameter, so there is a longer tail after the apex of
the frontier size.

Examining where the time is spent during an entire search
reveals the majority of it is spent in the bottom-up implementa-
tion (Figure 12). Since the bottom-up approach skips so many
examinations, the effective search rate for the bottom-up steps
is much higher (order of magnitude) than the top-down ap-
proach. Conversion and mf calculation take a non-negligible
fraction of the runtime, but this overhead is worthwhile due
to the extreme speedup provided by the bottom-up approach.
The nearly constant degree of erdos25 results in a steady
but modest growth of the frontier, so more steps will be run
top-down and with a larger frontier, resulting in more work
at the conversion point, more degrees to sum each step, and
more edge checks run in top-down mode.

Figure 13 plots the speedups for the suite compared to
the reduction in number of edges checked. The speedup is
reasonably correlated with the reduction in edges checked,
and the slope of a best-fit line is approximately 0.3. The
slope is less than 1.0 due to a variety of overheads. While
the bottom-up approach skips edges, it reduces the spatial
locality of the remaining memory accesses, which impacts
memory performance in modern processors that bring data
from memory in units of cache blocks rather than individual
words. Conversion between frontier data structures and mf

calculation add other overhead. Using top-down-check as a
baseline rather than top-down, further reduces the relative
advantage since edge examinations become less expensive in
the baseline as they will often hit the bitmap in the last-level
cache.

E. Scalability

We evaluate the scalability of our Hybrid-heuristic im-
plementation on the 40-core system in a fashion similar to
prior work [1]. Our approach sees parallel speedup with each
additional core, but does not gain much from hyperthreading
on the 40-core system (Figure 14). Our approach does benefit
from larger graphs with more vertices, as more computation
helps to amortize away the overheads (Figure 15). Increasing
the degree is particularly beneficial for our approach because
this does not significantly increase the runtime but does
increase the number of input edges, which results in a higher
effective search rate.

F. Comparison Against Other Implementations

We also compare our hybrid implementation against previ-
ous state-of-the-art shared-memory implementations. We begin
with the multicore implementation from Hong et al. [15].
Note the implementation by Hong et al [15] is faster than
that of Agarwal et al. [1] even while using slower hardware.
We use the exact same model hardware and the same graph
generator source code (SNAP [3]) to provide a point-for-point
comparison as shown in Figure 16. Our implementation is
2.4× faster on uniform random (erdos25) and 2.3× faster
on scale-free (rmat25). Our implementation experiences a
slowdown after 8 threads due to the switch to hyperthreads in
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our tightly synchronized approach, but using 16 hyperthreads
is still noticeably faster than just 8 hyperthreads on the 8
available cores. Furthermore, our CPU implementation using
16 hyperthreads is even faster than the GPU-CPU hybrid
implementation presented by Hong et al. [15], despite the
GPU having greater memory bandwidth and supporting more
outstanding memory accesses. Note also that not all of the
graphs in our study above would fit in the reduced memory
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Fig. 12. Breakdown of time spent per search.

capacity of the GPU, and that our implementation records a
full parent pointer rather than just the BFS depth [15].

We attempt to compare against Chhugani et al. [10] in
Table III. Compared to 8-core, their platform has a higher
clockrate (2.93GHz vs. 2.67GHz) and more memory (96GB
vs. 12GB), but should otherwise be similar (Intel X5570 vs.
Intel X5550). For the synthetic graphs, we compare against
those with 16M vertices since they are the largest that fit in
our memory. Despite using a slower system, hybrid-heuristic
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rmat-8 rmat-32 erdos-8 erdos-32 orkut facebook
Prior 750 1100 295 505 2050 460
8-core 1580 4630 850 2250 4690 1360

TABLE III
PERFORMANCE IN MTEPS OF Hybrid-heuristic ON THE 8-CORE SYSTEM

COMPARED TO CHHUGANI ET AL. [10]. SYNTHETIC GRAPHS ARE ALL
16M VERTICES, AND THE LAST NUMBER IN THE NAME IS THE DEGREE.

DUE TO DIFFERENCES IN COUNTING UNDIRECTED EDGES FOR TEPS, WE
HAVE SCALED ERDOS AND FACEBOOK APPROPRIATELY. THIS CHANGE

DOES NOT APPEAR IN THE PUBLISHED VERSION SINCE IT WAS CONFIRMED
BY THE PRIOR AUTHORS AFTER THE PUBLICATION DEADLINE.

is faster, and sometimes by a significant degree. In general,
the highest degree graphs seem to enjoy the greatest relative
speedups.

We compare our results to that of Merrill et al. [20].
which is the highest published performance for shared memory
(Table IV). Our Hybrid-heuristic performs well due to the
high input degrees of the graphs used in spite of the memory
bandwidth advantages of the GPUs. The GTEP rates for the
GPUs for kron_g500-logn20 have been halved since we
calculated search rates for undirected graphs based on the
number of undirected edges.

VII. RELATED WORK

Buluç and Madduri [8] provide a thorough taxonomy of
related work in parallel breadth-first searches. In this section

kron random. rmat.
System g500-logn20 2Mv.128Me 2Mv.128Me

GPU results from Merrill et al. [20]
Single-GPU 1.25 2.40 2.60
Quad-GPU 3.10 7.40 8.30

Hybrid-heuristic results on multicore
8-core 7.76 6.75 6.14
16-core 12.38 12.61 10.45
40-core 8.89 9.01 7.14

TABLE IV
Hybrid-heuristic ON MULTICORE SYSTEMS IN THIS STUDY COMPARED TO

GPU RESULTS FROM MERRILL ET AL. [20] (IN GTEPS).



we focus on the work most relevant to this study, principally
parallel shared-memory implementations.

Bader and Madduri [2] demonstrate large parallel speedups
for BFS on an MTA-2. Parallelism is extracted both at the
level of each vertex as well as at each edge check. The fine-
grained synchronization mechanisms of the MTA are used to
efficiently exploit this parallelism. Since the MTA does not
use caches and instead uses many hardware threads to hide
its shared main memory latency, the implementation does not
need to optimize for locality.

In contrast, Agarwal et al. [1] optimize for locality to push
the limits of a quad-socket system built from conventional
microprocessors, and show speedups over previous results
from clusters and custom supercomputers, including the MTA-
2 [2]. Careful programming is used to reduce off-socket traffic
(memory and inter-socket) as much as possible. Threads are
pinned to sockets and utilize local data structures such that all
the work that can be done within a socket never leaves the
socket. Bitmaps are used to track completed vertices to avoid
reading DRAM. Whenever an edge check must go to another
socket, it utilizes a custom inter-socket messaging queue.

Hong et al. [15] improve upon Agarwal et al. with hybrid
algorithms that utilize multiple CPU implementations and a
GPU implementation. As in our work, the algorithms switch
at step boundaries and make decisions based on on-line
heuristics, but in this case to select between CPU and GPU
implementations of a purely top-down approach. The CPU
implementation is accelerated by the read-array approach,
which combines the frontier with the output array. The output
provided is the depth of each node rather than its parent,
and by bounding the depth to be less than 256, the output
array can be compacted by storing it as bytes. Instead of
appending vertices to a frontier, their output is set to depth+1.
On each step, all vertices are scanned searching for the
current depth, and then visits are performed from any vertex
found in the frontier. By using the output array to act as the
frontier, duplicate entries are squashed, and spatial locality is
increased due to the sequential array accesses to the graph. The
GPU implementation outperforms the CPU implementation
for a sufficiently large frontier, and heuristics select which
implementation to use. In Section VI-F, we compare our
new scheme directly against the performance in [15] utilizing
the same synthetic data on the same model CPU hardware,
but without the GPU. Note our scheme retains full parent
information, not just search depth.

Merrill et al. [20] improve the performance of BFS on GPUs
through the use of prefix sum to achieve high utilization of all
threads. The prefix sum is used to compute the offsets from
the frontier expansion, which reduces the contention for atomic
updates to the frontier queue. This allows the graph exploration
to have little control divergence between threads. They also
leverage various filtering techniques enabled by bitmaps to
reduce the number of edges processed. This approach is
beneficial for all diameters of graphs, and they present results
indicating they are the fastest published for shared memory
systems, especially with their quad-GPU parallelization. Our

approach is advantageous for low diameter graphs, and as
shown in Section VI-F, our approach even outperforms their
quad-GPU implementation when using the 16-core platform.

Chhugani et al. [10] perform a multitude of optimizations
to improve memory utilization, reduce inter-socket traffic, and
balance work between sockets. Their memory performance
is improved by reordering computation and data layout to
greatly increase spatial locality. The load balancing techniques
proposed are dynamic, and can adapt to the needs of the cur-
rent graph. Furthermore, they demonstrate an analytic model
derived from the platform’s architectural parameters that accu-
rately predicts performance. Many of these optimizations are
complementary to our work and could be added on top of our
implementation. In Section VI-F we compare directly against
them using a slightly slower system with the same graphs and
demonstrate reasonable speedups.

An early implementation of our algorithm on the mirasol
system reached 17th place in the November 2011 rankings of
the Graph500 competition [5, 14]. This earlier implementation
used a cruder heuristic and included an alternate top-down
step that integrated the conversion for bottom-up. It achieved
the highest single-node performance and the highest per-core
processing rate. Using just a single quad-socket system similar
to the 40-core system, the hybrid BFS algorithm outperformed
clusters of >150 sockets and specialized architectures such as
the Cray XMT2 [22] and the Convey HC-1ex [11]. Its process-
ing rate per-core was over 30× the top-ranked cluster system,
highlighting the performance penalty a cluster experiences
when crossing the network. This implies that scaling across a
cluster should be used to solve larger problems (weak scaling)
rather than solving fixed-size problems faster (strong scaling),
indicating large shared-memory systems are still useful for
irregular difficult-to-scale problems like BFS.

VIII. CONCLUSION

Performing a BFS in the bottom-up direction can substan-
tially reduce the number of edges traversed compared with the
traditional top-down approach. A child needs to find only one
parent instead of each parent attempting to claim all possible
children. This bottom-up technique is advantageous when the
search is on a large connected component of low-effective
diameter, as then the frontier will include a substantial fraction
of the total vertices. The conventional top-down approach
works well for the beginning and end of such a search, where
the frontier is a small fraction of the total vertices. We have
developed a hybrid approach to effectively combine these two
algorithms, using a simple heuristic to guide when to switch.
We believe this hybrid scheme yields the current best-known
BFS performance for single shared-memory nodes.

The results of this work demonstrate the performance im-
provement potential of integrating the bottom-up approach into
BFS, but it will not always be advantageous. Fortunately, the
same top-down implementation that is used for the steps when
the frontier is small can be used for entire searches when the
bottom-up approach is not advantageous. The heuristic will
allow this to happen automatically, as searches that do not



generate a massive frontier will not trigger the switch. In this
sense, the bottom-up approach can be seen as a powerful way
to accelerate a BFS on a low-diameter graph.

High-diameter graphs will not benefit from the bottom-up
approach, but they are much easier to partition and thus easier
to parallelize than low-diameter graphs. This work presents an
algorithmic innovation to accelerate the processing of more
difficult-to-parallelize BFS.

IX. ACKNOWLEDGEMENTS

Research supported by Microsoft (Award #024263) and
Intel (Award #024894) funding and by matching funding by
U.C. Discovery (Award #DIG07-10227). Additional support
comes from Par Lab affiliates National Instruments, Nokia,
NVIDIA, Oracle, and Samsung. Partially funded by DARPA
Award HR0011-11-C-0100.

REFERENCES

[1] Virat Agarwal et al. Scalable graph exploration on
multicore processors. International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis (SC), 2010.

[2] David Bader and Kamesh Madduri. Designing mul-
tithreaded algorithms for breadth-first search and st-
connectivity on the Cray MTA-2. International Confer-
ence on Parallel Processing (ICPP), 2006.

[3] David Bader and Kamesh Madduri. SNAP: Small-
world network analysis and partitioning: an open-source
parallel graph framework for the exploration of large-
scale networks. International Parallel and Distributed
Processing Symposium (IPDPS), 2008.
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Publicationes Mathematicae, 6:290–297, 1959.

[14] Graph500 benchmark. www.graph500.org.
[15] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun.

Efficient parallel graph exploration on multi-core CPU
and GPU. Parallel Architectures and Compilation Tech-
niques (PACT), 2011.

[16] Haewoon Kwak et al. What is Twitter, a social network or
a news media? International World Wide Web Conference
(WWW), 2010.

[17] Jurij Leskovec et al. Realistic, mathematically tractable
graph generation and evolution, using Kronecker mul-
tiplication. European Conference on Principles and
Practice of Knowledge Discovery in Databases, 2005.

[18] Y Low et al. GraphLab: A new framework for parallel
machine learning. Uncertainty in Artificial Intelligence,
2010.

[19] Grzegorz Malewicz et al. Pregel: A system for large-
scale graph processing. International Conference on
Management of Data (SIGMOD), Jun 2010.

[20] Duane Merrill, Michael Garland, and Andrew Grimshaw.
Scalable GPU graph traversal. Principles and Practice
of Parallel Programming, 2012.

[21] Alan Mislove et al. Measurement and analysis of
online social networks. ACM SIGCOMM Conference on
Internet Measurement (IMC), 2007.

[22] David Mizell and Kristyn Maschhoff. Early experiences
with large-scale Cray XMT systems. International Con-
ference for High Performance Computing, Networking,
Storage and Analysis (SC), 2009.

[23] Paolo Boldi others. Ubicrawler: A scalable fully dis-
tributed web crawler. Software: Practice & Experience,
34(8):711–726, 2004.

[24] Duncan Watts and Steven Strogatz. Collective dynamics
of ‘small-world’ networks. Nature, 393:440–442, June
1998.

[25] Wikipedia page-to-page link database 2009.
http://haselgrove.id.au/wikipedia.htm.

[26] Christo Wilson et al. User interactions in social net-
works and their implications. European conference on
Computer systems (EuroSys), 2009.

[27] Andy Yoo et al. A scalable distributed parallel breadth-
first search algorithm on BlueGene/L. International Con-
ference for High Performance Computing, Networking,
Storage and Analysis (SC), 2005.

[28] Kisun You et al. Scalable HMM-based inference engine
in large vocabulary continuous speech recognition. IEEE
Signal Processing Magazine, 2010.


