
GAIL: The Graph Algorithm Iron Law

Scott Beamer Krste Asanović David Patterson
Electrical Engineering & Computer Sciences Department

University of California, Berkeley, California
{sbeamer,krste,pattrsn}@eecs.berkeley.edu

ABSTRACT
As new applications for graph algorithms emerge, there has
been a great deal of research interest in improving graph
processing. However, it is often difficult to understand how
these new contributions improve performance. Execution
time, the most commonly reported metric, distinguishes which
alternative is the fastest but does not give any insight as to
why. A new contribution may have an algorithmic innova-
tion that allows it to examine fewer graph edges. It could
also have an implementation optimization that reduces com-
munication. It could even have optimizations that allow it to
increase its memory bandwidth utilization. More interest-
ingly, a new innovation may simultaneously affect all three
of these factors (algorithmic work, communication volume,
and memory bandwidth utilization). We present the Graph
Algorithm Iron Law (GAIL) to quantify these tradeoffs to
help understand graph algorithm performance.

1. INTRODUCTION
With growing interest in applications using graph algo-

rithms, there has been a corresponding growth in graph
processing acceleration research. This interest in improving
graph processing performance is not confined to any one area
and is ongoing at all layers of the computational stack (al-
gorithms, implementation, frameworks, and hardware plat-
forms). As each new innovation is shown to be beneficial by
demonstrating a speedup, it is often unclear what causes the
speedup since many of the recent innovations span multiple
layers of the stack.

Execution time is the most important metric, but is unfor-
tunately not instructive on its own. It allows us to quantify
how much faster one execution is than another, but for those
executions to be comparable using time, many parameters
should be kept the same (input graph and graph kernel). Us-
ing a rate, such as traversed edges per second (TEPS) [11],
gives an idea of execution speed and the ability to compare
executions using different input graphs. However, TEPS can
be misleading, especially if the ways edges are counted for

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
IAˆ3 2015, November 15-20, 2015, Austin, TX, USA
Copyright 2015 ACM 978-1-4503-4001-4/15/11 ...$15.00
DOI: http://dx.doi.org/10.1145/2833179.2833187

TEPS differ. Whether undirected input edges are counted as
one edge or two directed edges changes TEPS by a factor of
two, which is often greater than the margin of improvement
for a new optimization. A new algorithm could substantially
reduce the number of traversed edges, allowing for a lower
TEPS score to actually represent a faster execution.

The shortcomings of TEPS demonstrates that a single
metric cannot be used, and instead it should be comple-
mented by other metrics. For example, reporting TEPS
would be better if the number of traversed edges was also
reported. Our Graph Algorithm Iron Law (GAIL) does
this and more by also including memory requests since the
memory system is often the biggest architectural bottleneck.
With GAIL, we concisely factor out the differences between
algorithm, implementation, and hardware platform. In the
rest of this work, we describe GAIL in detail and demon-
strate its utility with two case studies considering the impact
of algorithm, implementation, input graph, and hardware
platform.

2. GRAPH ALGORITHM IRON LAW
Algorithms continue to be the most important factor for

performance, since a better algorithm can typically outper-
form a better software implementation or hardware plat-
form. Complexity analysis, the classic tool for evaluating al-
gorithms, can sometimes be less instructive for high-performance
graph processing evaluations. Worst-case analysis often yields
overly pessimistic performance bounds that differ greatly
from the common case. Additionally, the amount of algo-
rithmic work for many advanced graph algorithms depends
heavily on the input graph topology, which is often diffi-
cult to quantify. Furthermore, as the field matures, many
innovations will be implementation optimizations and not
algorithmic optimizations, but these innovations would ap-
pear to provide no improvement if compared analytically. A
good alternative in these challenging scenarios is to empiri-
cally measure the amount of algorithmic work.

Once the impact of the algorithm is understood, it is im-
portant to understand the potential and limitations of the
hardware platform. Depending on the input graph and the
algorithm, there can be a variety of hardware performance
bottlenecks; however, graph algorithms are typically mem-
ory bound and not compute bound. Contrary to popular be-
lief, the memory bottleneck is due to memory latency much
more often than it is due to memory bandwidth because
memory bandwidth is typically underutilized [4]. A modest
cache hit rate can cause cache misses to be so rare that an in-
sufficient number of them fit into the instruction window to

fill all of the outstanding memory request slots. With an in-
sufficient number of outstanding memory requests, the pro-
cessor is unable to fully utilize the memory bandwidth. This
leads to a common tradeoff: improving cache hit rates re-
sults in memory bandwidth becoming further underutilized.
Other factors (branch mispredictions, low instruction-level
parallelism, and temporal variation) can also hinder mem-
ory bandwidth, but good locality is often the most impactful.
Given all of this, the most important architectural features
affecting graph processing execution are cache effectiveness
and memory bandwidth utilization.

Taking the insights we have learned above, we present a
simple model to understand graph algorithm performance.
Analogous to how the Iron Law of CPU performance [9, 16]
factors execution time into the product of the number of
instructions executed, cycles per instruction, and the cycle
time, our Graph Algorithm Iron Law (GAIL) factors execu-
tion time into the product of the number of traversed edges,
the number of memory requests per traversed edge, and the
inverse bandwidth1:

time

kernel
=

edges

kernel
× memory requests

edge
× seconds

memory requests

This model combines the three characteristics we find
most relevant for graph algorithm performance: algorith-
mic efficiency, cache effectiveness, and memory bandwidth
utilization. To measure the amount of algorithmic work,
we use edges examined instead of vertices examined because
the amount of work per edge is roughly constant, while the
amount of work per vertex can vary dramatically (it is often
a function of its degree). With the help of execution time
and edges examined, we break down communication vol-
ume to DRAM (memory requests) into two instructive rates
that measure cache effectiveness (second term) and memory
bandwidth utilization (third term).

Although GAIL may appear simple, there are some note-
worthy elements hidden within. The product of the first two
terms is the number of memory requests per kernel, which
is proportional to the amount of data moved from DRAM.
The product of the second term and the third term is sec-
onds per traversed edge, which is the inverse of TEPS from
Graph500. Beyond runtime, the only additional data that
needs to be collected for a GAIL analysis is the number of
memory requests and the number of traversed edges.

When counting memory requests, GAIL users should in-
clude prefetches in addition to cache misses.2 Although in-
cluding prefetches can be more arduous than collecting only
cache misses, including prefetch traffic is worthwhile because
it increases the accuracy of GAIL. When the prefetches are
beneficial, accounting for that traffic prevents underreport-
ing the number of memory requests necessary to complete
the kernel. When the prefetches are not helpful, most mod-
ern processors are designed to decrease the amount of hard-
ware prefetching to keep these unneeded prefetches from
being too detrimental to performance. Unused prefetches
will consume memory bandwidth, but a reasonably designed

1The last term (seconds per memory request) is best thought
of as inverse of bandwidth rather than the average time per
memory request. If there is more than one memory request
outstanding, this metric will understandably become smaller
than the actual average memory latency.
2We do not count cache hits since we assume out-of-order
execution can hide their latency.

Description |V | (M) |E| (M) References
Kronecker Synthetic 128.0 2,111.6 [11, 15]
Web Crawl of .sk 50.6 1,949.4 [7]
Roads of USA 23.9 58.3 [8]

Table 1: Input graphs with abbreviations bolded

system will give cache misses priority over the hardware
prefetcher. Throughout our experiments on IVB (evalua-
tion system in Section 3), we never observe the hardware
prefetcher consuming all of the remaining memory band-
width [4].

GAIL can be instructive to a variety of potential users.
Algorithm designers can use it to demonstrate the work re-
duction (fewer edges examined), and doing this empirically
can be helpful when it is difficult to quantify analytically. A
framework developer can demonstrate the efficiency of their
implementation by achieving either higher memory band-
width or fewer memory requests per traversed edge. Even a
hardware platform designer could use GAIL to understand
the tradeoffs in the design space such as those between core
count, thread count, cache sizes, and memory bandwidth,
for example.

3. CASE STUDIES USING GAIL
For any evaluation, measurements should be taken to at-

tempt to explain the results, and some of the metrics used
may be specific to that study. GAIL is useful as a simple
way to verify if the improvements reduce the amount of al-
gorithmic work, increase locality, or improve memory band-
width utilization. To demonstrate the utility of GAIL, we
perform two case studies to investigate tradeoffs in software
implementation and changes to the hardware platform.

For our case studies, we use the breadth-first search (BFS)
implementation from the GAP Benchmark Suite’s reference
code [2, 10]. We select three input graphs for size and topo-
logical diversity (Table 1). A proper evaluation will use more
input graphs and graph kernels, but we believe these brief
case studies can still demonstrate GAIL’s utility. All of the
results are averaged across 64 searches that each start from
a randomly selected non-zero degree vertex.

We use a dual-socket Intel Ivy Bridge server (IVB) with
E5-2667 v2 processors, similar to what one would find in
a datacenter. Each socket contains eight 3.3 GHz two-way
multithreaded cores and 25 MB of last-level cache (LLC).
Using a synthetic microbenchmark we are able to achieve
a maximum memory bandwidth of 1210 M random memory
requests per second (77.4 GB/s) which corresponds to an
inverse bandwidth of 0.826 ns/memory request [4]. We use
Intel PCM to access hardware performance counters [13].

3.1 Understanding Implementation Tradeoffs
We first use GAIL to examine the impacts of algorith-

mic innovations and implementation optimizations on BFS
on the kron graph, and Table 2 shows the GAIL metrics
(last three columns) as well as the raw data that produces
them (second, third, and fourth columns). As a baseline,
we implement a classic top-down approach (TD) within the
reference code that uses a shared queue for the frontier with
thread-local buffers to reduce false sharing for vertex ap-

Memory Traversed Memory ns
Ver. Time Requests Edges Requests Memory

(s) (M) (M) Edge Request
TD 3.964 3,292.88 4,223.22 0.780 1.204
BM 2.255 1,024.31 4,223.22 0.243 2.201
DO 0.424 209.50 183.78 1.140 2.022

Table 2: BFS on kron with 16 cores

pends. As expected, the number of traversed edges is twice
the number of input edges since each undirected input edge
is traversed once in both directions. The cache provides
some benefit as the number of memory requests per tra-
versed edge is less than one. From the last GAIL term (1.204
ns / memory request) we can see that the execution uses 68%
of the platform’s memory bandwidth when compared to the
maximum we achieve with the microbenchmark.

We improve upon the performance of top-down with the
simple optimization of using a bitmap to reduce the number
of reads to the parent array (BM) [1]. The bitmap indicates
if a vertex has already been visited, so the parent array only
needs to be examined in the rare case the bitmap indicates
a vertex is unvisited. The bitmap is 32× smaller than the
parent array, so it is more likely to stay in the cache. The
bitmap optimization does improve performance relative to
top-down (1.75× speedup), but from the GAIL metrics it is
clearly not an algorithmic improvement since it traverses the
same number of edges. The benefit of the bitmap optimiza-
tion is visible in the reduction in memory requests per edge,
as fewer edge traversals miss in the LLC because fewer edge
traversals need to check the parent array. In spite of utiliz-
ing less memory bandwidth (higher ns per memory request),
bitmap is still faster than top-down because of the larger re-
duction in memory requests per traversed edge. The GAIL
metrics easily decompose this beneficial tradeoff of one met-
ric (cache locality) improving by more than another metric
(memory bandwidth utilization) worsens.

As an example of an algorithmic optimization, we use
the direction-optimizing implementation (DO) included in
the benchmark suite [3]. The direction-optimizing approach
provides a 5.3× speedup over the BM implementation, and
using GAIL we see this is due to algorithmic improvements
since it traverses 23× fewer edges. The speedup in execu-
tion time is substantially less than the reduction in traversed
edges because DO has worse cache locality as visible with
GAIL by the increase in the number of memory requests per
traversed edge.

3.2 Understanding Impact of HW Platform
To demonstrate the utility of GAIL for evaluating hard-

ware platforms, we vary the number of cores our workload
uses. By varying the number of cores we allocate, we are not
only increasing the potential computational throughput, but
we are also increasing the potential for cache thrashing in
the LLC and increasing synchronization overheads due to an
increased number of participants. For these BFS strong scal-
ing measurements, we use two new graphs (road and web)
in addition to kron.

Figure 1 shows the results of the second two GAIL terms.
We do not visualize the first term (traversed edges) since we
use the same implementation for all three input graphs so

0.2 0.4 0.6 0.8 1.0 1.2
Memory Requests / Traversed Edge

0

5

10

15

20

25

n
s

/
M

e
m

o
ry

 R
e
q
u
e
st

1
32

1
16

1
8

1
4

1
2

1
24

8

GTEPS

Graph

web

road

kron

Figure 1: Strong scaling BFS from 1 core (upper
left) to 16 cores (lower right). GTEPS (billion tra-
versed edges per second) shown by contours. Single-
core point for road (0.316, 46.62) clipped by view.

the number of traversed edges is the same. In Figure 1, mov-
ing down the graph represents utilizing more memory band-
width. The contours represent traversed edges per second
and moving towards the origin represents better through-
put. Since the number of traversed edges is constant (for
a given input graph and start vertex), moving towards the
origin represents a speedup, and our BFS implementation
generally delivers great speedups on all three graphs.

Traversing the web graph achieves over a 10× speedup
with 16 cores. As more cores are used, they are able to
generate more memory requests (lower on graph) and this
improves performance because this does not result in excess
memory traffic (same number of memory requests per edge
shown by little horizontal change). Traversing the input
graph kron does move extra data, as using additional cores
results in an increase in the number of memory requests
per traversed edge (curving to the right). In spite of this
extra communication, our BFS implementation on kron still
achieves a greater than 11× speedup due to the extra cores
successfully utilizing more memory bandwidth.

Traversing the road graph demonstrates less parallel scal-
ability which is in large part due to road’s high diame-
ter and small size. Since it is a high diameter graph, the
direction-optimizing implementation will never switch into
the bottom-up approach and will perform the entire search
top-down. Since the graph road has fewer edges and a high
diameter, there is less work per step and more steps (more
synchronizations), further complicating parallel scalability.
Using only one socket (8 cores), achieves a 5× speedup
by utilizing more bandwidth than it moves additional data
(close to vertical). Once traversing the road graph starts
using the other socket, it actually goes slower (elbow to the
right). With the help of GAIL, we can clearly see the cause
is a sharp increase in the number of memory requests per
edge (moving right) without much increase in the amount
of utilized memory bandwidth (small vertical change). This
is an indication to the hardware designer that the cache
is likely thrashing and an indication to the software imple-
mentor that the graph may be too small to continue strong
scaling on this platform.

4. FREQUENTLY ASKED QUESTIONS
In talking to others about using GAIL, some questions

have arisen:

Q: What if GAIL users have different definitions for
what constitutes a traversed edge?
A: Different traversed edge definitions will of course change
the numerical results of GAIL, but by whatever factor the
number of traversed edges is scaled will also inversely scale
the number of memory requests per traversed edge. For
example, deliberately undercounting traversed edges to ap-
pear algorithmically better will result in appearing to per-
form more memory requests per edge (worse). This concern
should generally not be problematic since what constitutes
a traversed edge is typically unambiguous and most evalua-
tions will be performed by the same evaluator.

Q: Are the inputs to GAIL (time, traversed edges,
and memory requests) the only important metrics
for graph algorithm performance?
A: No, but we believe those to be the three most impor-
tant. Branch mispredictions can definitely hinder perfor-
mance [12]. Considering the number of instructions per tra-
versed edge is another interesting metric for implementation
efficiency, but we find it to be less instructive than memory
requests per edge. Instruction throughput for graph algo-
rithm execution is much more likely to be stalled by waiting
on memory requests than a lack of available function units
to execute ready instructions [4].

Q: Could GAIL be modified to consider energy?
A: Yes. Replacing time with energy in the GAIL equa-
tion results in an interesting new term: joules per mem-
ory request. Unfortunately, this modification to the GAIL
equation may be less instructive due to tradeoffs between
dynamic power and static power [6].

Q: Does GAIL work for distributed memory or semi-
external memory implementations?
A: GAIL is designed for single-node shared memory systems
since its metrics focus on the platform’s most impactful ar-
chitectural features (cache utility and memory bandwidth).
For other platforms, substituting memory requests within
GAIL for the other platform’s most important bottleneck
could make a similarly instructive equation. For example,
for distributed memory (cluster) implementations [5], count-
ing network packets will be more helpful. For semi-external
memory (SSD/hard drive) implementations [14], counting
blocks read from storage could be more useful.

Q: Does GAIL work for non-traditional architec-
tures (those without caches)?
A: Yes. The Cray XMT is such an architecture, with a high
thread count and no processor caches [17]. Even without
the cache acting as a filter, the number of memory requests
and the rate they execute can vary substantially. For exam-
ple, different algorithms could result in different numbers
of memory requests per traversed edge. Different imple-
mentations or compiler optimizations could change whether
variables are kept in architectural registers or re-read from
memory.

Q: Does GAIL work for all algorithms?
A: GAIL is designed for graph algorithms and it only re-
quires a notion of traversing an edge. For algorithms that
do not operate on graphs, we believe other analogous iron
laws could be defined.

5. CONCLUSION
More specialized metrics should be a part of many graph

processing evaluations, but GAIL provides a simple start-
ing point by factoring out the tradeoffs between algorith-
mic work (traversed edges), cache locality (memory requests
per traversed edge), and memory bandwidth utilization. If
widely adopted, GAIL could allow for concise comparisons
of approaches with metrics already familiar to the commu-
nity. Fundamentally, GAIL is encouraging the use of deeper
and more instructive metrics. A new research contribution
is much more useful if the community understands why the
contribution is faster, rather than simply knowing it outper-
forms the predecessor.

Acknowledgements
Research partially funded by DARPA Award Number HR0011-
12-2-0016, the Center for Future Architecture Research, a
member of STARnet, a Semiconductor Research Corpora-
tion program sponsored by MARCO and DARPA, and AS-
PIRE Lab industrial sponsors and affiliates Intel, Google,
Huawei, Nokia, NVIDIA, Oracle, and Samsung.

6. REFERENCES
[1] V. Agarwal, F. Petrini, et al. Scalable graph exploration on

multicore processors. SC, 2010.

[2] S. Beamer, K. Asanović, and D. A. Patterson. The GAP
benchmark suite. arXiv:1508.03619, 2015.

[3] S. Beamer, K. Asanović, and D. A. Patterson.
Direction-optimizing breadth-first search. SC, 2012.

[4] S. Beamer, K. Asanović, and D. A. Patterson. Locality
exists in graph processing: Workload characterization on an
Ivy Bridge server. International Symposium on Workload
Characterization (IISWC), 2015.

[5] A. Buluç and J. Gilbert. The Combinatorial BLAS: Design,
implementation, and applications. International Journal of
High Performance Computing Applications (IJHPCA),
25(4):496–509, 2011.

[6] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc. A
roofline model of energy. In IPDPS, 2013.

[7] T. Davis and Y. Hu. The University of Florida sparse
matrix collection. ACM Transactions on Mathematical
Software, 38:1:1 – 1:25, 2011.

[8] 9th DIMACS implementation challenge.
http://www.dis.uniroma1.it/challenge9/, 2006.

[9] J. Emer and D. Clark. A characterization of processor
performance in the VAX-11/780. ISCA, 1984.

[10] GAP benchmark suite reference code v0.6.
https://github.com/sbeamer/gapbs.

[11] Graph500 benchmark. www.graph500.org.
[12] O. Green, M. Dukhan, and R. Vuduc. Branch-avoiding

graph algorithms. SPAA, 2015.
[13] Intel performance counter monitor.

www.intel.com/software/pcm.

[14] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi:
Large-scale graph computation on just a PC. Symposium
on Operating Systems Design and Implementation, 2012.

[15] J. Leskovec, D. Chakrabarti, et al. Realistic,
mathematically tractable graph generation and evolution,
using Kronecker multiplication. European Conference on
Principles and Practice of Knowledge Discovery in
Databases, 2005.

[16] D. A. Patterson and J. L. Hennessy. Computer
Organization and Design: The Hardware/Software
Interface. Morgan Kaufmann, 4th edition, 2008.

[17] K. D. Underwood, M. Vance, J. Berry, and B. Hendrickson.
Analyzing the scalability of graph algorithms on Eldorado.
In IPDPS, 2007.

