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Need More Informative Metrics

Time

+ is often the the most important

- requires other parameters matched

Traversed edges per second (TEPS)

+ a rate, so can compare different inputs

- confusion about what counts as a TE
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Time & TEPS only quantify which 
is fastest, no insight into why
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Graph Performance Factors

For measurements: [Beamer, IISWC, 2015]
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Algorithms - how much work to do

Cache utility - how much data to move

Memory bandwidth - how fast data moves
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annotate code to count edges traversed

use performance counters to access total # of 
memory requests
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Comparing BFS Implementations
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3 BFS Approaches 

• Naive - classic top-down 

• Bitmap - uses bitmaps to 
reduce communication 

• Direction-optimizing - 
algorithmically does less

Kronecker SCALE=27, 32 threads, Ivy Bridge

Time doesn’t explain speedup
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BFS Strong Scaling Analyzed by GAIL
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Kronecker USA Roads
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Delta-Stepping Analyzed by GAIL
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~Dijkstra ~Bellman-Ford
∆ Parameter

ParallelismWork Efficiency

1 ∞
tradeoff

Single-source shortest paths algorithm
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Delta-Stepping Analyzed by GAIL
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GAP Benchmark Suite

Benchmark Specifications (technical report) 

• standardize input graphs and rules 

• allows other implementations to compare 

Portable, high-quality baseline code 

• Only requirement is C++11 & OpenMP 

• Built in testing to verify results
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Conclusion

GAIL concisely breaks down performance 

• useful as a starting point for introspection 

• useful as simple model to weigh tradeoffs
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What Do GAIL Results Represent?

GAIL results are for a particular execution 

• fixed: input, platform, implementation 

• changing any of above will change results 

Focused on single-server shared-memory 

GAIL requirements 

• measure: runtime, traversed edges, 
memory requests 

• algorithm has notion of “traversing” edge
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Why Not Complexity Analysis?

Formal complexity analysis is helpful, but… 

• Many algorithms’ runtime is input graph 
topology-dependent, but often difficult to 
model real-world graphs 

• Hides many improvements to platform or 
implementation optimizations 

• Can be overly pessimistic. Many 
algorithms with a slower worst-case 
performance much faster in practice
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What About Other Platforms?

GAIL is for single-server shared memory 

For other platforms, replace memory 
requests with equivalent bottleneck metric 

• Clusters: packets or bytes transmitted 

• Flash/HD: blocks read from storage 

• Cache-less (XMT): memory requests OK
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Iron Law Reapplied
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Graph # Vertices # Edges Degree Diameter Degree 
Dist.

Roads of USA 23.9M 58.3M 2.4 High const

Web Crawl of .sk Domain 50.6M 1949.4M 38.5 Medium power

Kronecker Synthetic Graph 128.0M 2048.0M 16.0 Low power

Target Platform 

• Dual-socket Intel Ivy Bridge 3.3 GHz 

• Socket: 8 cores with 25MB L3 cache 

• DRAM: 128 GB DDR3-1600


